DOI QR코드

DOI QR Code

Infra-Red Study of Surface Carbonation on Polycrystalline Magnesium Hydroxide

  • Kwon, Hee-Kyoung (Department of Chemistry, Sookmyung Women’s University) ;
  • Park, Dong-Gon (Department of Chemistry, Sookmyung Women’s University)
  • Published : 2009.11.20

Abstract

Carbonation of $Mg(OH)_2$ at 300 ${^{\circ}C}$ was studied by Infrared spectroscopy. Dehydroxylation and carbonation reactions were carried out in consecutive manner via 2-step procedure. Unidentate carbonates were produced only on defective surface of MgO in situ generated by dehydroxylation of $Mg(OH)_2$$Mg(OH)_2$${^{\circ}C}$ was proposed.

Keywords

References

  1. Halmann, M.; Steinberg, M. Greenhouse Gas Carbon Dioxide Mitigation, Science and Technology; Lewis Publications: London, U. K., 1999
  2. Lackner, K. S.; Wendt, C. H.; Butt, D. P.; Joyce, E. L., Jr.; Sharp, D. H. Energy 1995, 20(11), 1153 https://doi.org/10.1016/0360-5442(95)00071-N
  3. Butt, D. P.; Lackner, K. S.; Wendt, C. H.; Conzone, S. D.; Kung, H.; Lu, Y.; Bremser, J. K. J. Amer. Ceram. Soc. 1996, 79(7), 1892 https://doi.org/10.1111/j.1151-2916.1996.tb08010.x
  4. Bearat, H.; McKelvy, M. J.; Chizmeshya, A. V. G.; Sharma, R.; Carpenter, R. W. J. Amer. Ceram. Soc. 2002, 85(4), 742 https://doi.org/10.1111/j.1151-2916.2002.tb00166.x
  5. Moodie, A. F.; Warble, C. E. J. Cryst. Growth 1986, 74, 89 https://doi.org/10.1016/0022-0248(86)90251-4
  6. Naono, H. Colloids Surf. 1989, 37, 55 https://doi.org/10.1016/0166-6622(89)80106-4
  7. McKelvy, M. J.; Sharma, R.; Chizmeshya, A. V. G.; Carpenter, R. W.; Streib, K. Chem. Mater. 2001, 13, 921 https://doi.org/10.1021/cm000676t
  8. Gillan, M. J.; Kantorovich, L. N.; Lindan, P. J. D. Current Opinion in Solid State & Materials Science 1996, 1, 820 https://doi.org/10.1016/S1359-0286(96)80108-2
  9. Gregg, S. J.; Razouk, R. I. J. Chem. Soc. 1949, S36 https://doi.org/10.1039/jr9490000s36
  10. Garn, P. D.; Freund, F. Trans. J. Brit. Ceram. Soc. 1975, 74(1), 23
  11. Evans, J. V.; Whateley, T. L. Trans. Faraday Soc. 1967, 63, 2769 https://doi.org/10.1039/tf9676302769
  12. Fukunda, Y.; Tanabe, K. Bull. Chem. Soc. Jpn 1973, 46, 1616 https://doi.org/10.1246/bcsj.46.1616
  13. Stark, J. V.; Park, D. G.; Lagadic, I.; Klabunde, K. J. Chem. Mater. 1996, 8, 1904 https://doi.org/10.1021/cm950583p
  14. Philipp, R.; Omata, K.; Aoki, A.; Fujimoto, K. J. Catal. 1992, 134, 422 https://doi.org/10.1016/0021-9517(92)90332-C
  15. Philipp, R.; Fujimoto, K. J. Phys. Chem. 1992, 96, 9035 https://doi.org/10.1021/j100201a063
  16. Pacchioni, G. Surf. Sci. 1993, 281, 207 https://doi.org/10.1016/0039-6028(93)90869-L
  17. Lee, M. H.; Park, D. G. Bull. Korean Chem. Soc. 2003, 24(10), 1437 https://doi.org/10.5012/bkcs.2003.24.10.1437
  18. Itoh, H.; Utamapanya, S.; Stark, J. V.; Klabunde, K. J.; Schlup, J. R. Chem. Mater. 1993, 5, 71 https://doi.org/10.1021/cm00025a015
  19. Koper, O. B.; Lagadic, I.; Volodin, A.; Klabunde, K. J. Chem. Mater. 1997, 9, 2468 https://doi.org/10.1021/cm970357a
  20. Anderson, P. J.; Horlock, R. F.; Oliver, J. F. Trans. Faraday Soc. 1965, 61, 2754 https://doi.org/10.1039/tf9656102754
  21. Coluccia, S.; Marchese, L.; Lavagnino, S.; Anpo, M. Spectrochim. Acta A 1987, 43(12), 1573 https://doi.org/10.1016/S0584-8539(87)80050-8
  22. Kn$\ddot{o}$zinger, E.; Jacob, K.; Singh, S.; Hofmann, P. Surf. Sci. 1993, 290, 388 https://doi.org/10.1016/0039-6028(93)90721-U
  23. Tsyganenko, A. A.; Filimonov, V. N. J. Mol. Struc. 1973, 19, 579 https://doi.org/10.1016/0022-2860(73)85136-1
  24. Smirnov, E. P.; Tsyganenko, A. A. Reac. Kinet. Catal. Lett. 1984, 26(3-4), 405 https://doi.org/10.1007/BF02067872
  25. Takezawa, N. Bull. Chem. Soc. Jpn 1971, 44, 3177 https://doi.org/10.1246/bcsj.44.3177
  26. Jones, C. F.; Reeve, R. A.; Rigg, R.; Segall, R. L.; Smart, R. C.; Turner, P. R. J. Chem. Soc., Faraday Trans. 1 1984, 80, 2609 https://doi.org/10.1039/f19848002609
  27. Lavalley, J. C.; Bensitel, M.; Gallas, J. P.; Lamotter, J.; Busca, G.; Lorenzelli, V. J. Mol. Struc. 1988, 175, 453 https://doi.org/10.1016/S0022-2860(98)80119-1
  28. Shido, T.; Asakura, K.; Iwasawa, Y. J. Chem. Soc., Faraday Trans. 1 1989, 85(2), 441 https://doi.org/10.1039/f19898500441
  29. Beruto, D.; Rossi, P. F.; Searcy, A. W. J. Phy. Chem. 1985, 89, 1695 https://doi.org/10.1021/j100255a031

Cited by

  1. and MgO Surface: DFT and DRIFT Approaches vol.116, pp.11, 2012, https://doi.org/10.1021/jp211171t
  2. Atomistic Simulation of Surface Selectivity on Carbonate Formation at Calcium and Magnesium Oxide Surfaces vol.116, pp.24, 2012, https://doi.org/10.1021/jp303301q
  3. Influence of natural adsorbates of magnesium oxide on its reactivity in basic catalysis vol.15, pp.45, 2013, https://doi.org/10.1039/c3cp53624f
  4. Nanoflower, nanoplatelet and nanocapsule Mg(OH)2 powders for adsorption of CO2 gas vol.52, pp.9, 2017, https://doi.org/10.1007/s10853-016-0728-4
  5. -chains showing temperature dependent spin-chain magnetic ordering vol.47, pp.36, 2018, https://doi.org/10.1039/C8DT02841A
  6. Study on the Kinetics and Mechanism of Grain Growth during the Thermal Decomposition of Magnesite vol.33, pp.8, 2012, https://doi.org/10.5012/bkcs.2012.33.8.2483
  7. Effect of H2O on Mg(OH)2 carbonation pathways for combined CO2 capture and storage vol.100, pp.None, 2013, https://doi.org/10.1016/j.ces.2012.12.027
  8. Applications of dynamic electrochemical impedance spectroscopy (DEIS) to evaluate protective coatings formed on AZ31 magnesium alloy vol.5, pp.37, 2009, https://doi.org/10.1039/c4ra16967k
  9. Kinetics and mechanism of ultrasonic-assisted magnesium oxide hydration vol.40, pp.1, 2009, https://doi.org/10.1016/j.ultsonch.2017.08.027
  10. The Bio-Synthesis of Three Metal Oxide Nanoparticles (ZnO, MnO 2 , and MgO) and Their Antibacterial Activity Against the Bacterial Leaf Blight Pathogen vol.11, pp.None, 2009, https://doi.org/10.3389/fmicb.2020.588326
  11. Extracellular Matrix/Amorphous Magnesium Phosphate Bioink for 3D Bioprinting of Craniomaxillofacial Bone Tissue vol.12, pp.21, 2009, https://doi.org/10.1021/acsami.0c05311
  12. Mesoporous Magnesium Oxide Adsorbent Prepared via Lime (Citrus aurantifolia) Peel Bio-templating for CO2 Capture vol.16, pp.2, 2021, https://doi.org/10.9767/bcrec.16.2.10505.366-373