Expedient One-Pot Synthesis of γ-Hydroxybutenolides Starting from Baylis-Hillman Adducts: Lactonization, Isomerization, and Aerobic Oxidation of α-Methylene- γ-hydroxyester

Ko Hoon Kim, Hyun Seung Lee, Sung Hwan Kim, Ka Young Lee, Ji-Eun Lee, ${ }^{\dagger}$ and Jae Nyoung Kim ${ }^{*}$
Department of Chemistry and Institute of Basic Science. Chomam National Chiversitu, Gwangju 500-757. Korea - E-mail. kiminachonnam.ac.kr
Department of Chemistry (BK21) and Central Instrument Facility, Gyeongsang National Chiversita, Jinju 660-701, Korea Received October 1. 2008. Accepted February 6, 2009

Abstract

We developed an efficient three-step synthetic protocol of γ-hydroxybutenolides starting from the Baylis-Hillman adducts: (i) bromination, (ii) Barbier reaction and (iii) one-pot $\mathrm{K}_{2} \mathrm{CO}_{3}$-mediated synthesis of γ-hydroxy butenolides. In addition, we showed the synthetic applicability of butenolides including self-dimerization, conjugate addition reaction, and alkylations.

Key Words: Baylis-Hillman adducts. γ-Hydroxybutenolides. Hydroxy lation, Lactones

Introduction

5-Hydroxyfuran-2(5 H)-ones (γ-lydroxybutenolides) are an important class of compounds because they often occur in natural products and exhibit a broad range of biological activities. ${ }^{1-3}$ These compounds are considered as antimutagen. bactericides. antitumor agents. allergy inhibitors, phospholipase A2 inhibitors, etc. ${ }^{1}$ Relevant examples include dysidiolide. manoalide. petrosaspongiolides and cacospongionolides (Figure 1). ${ }^{1} \gamma$-Hydroxybutenolides are also useful as synthetic intermediates in the preparation of physiologically active compounds. Because of the importance in chemical as well as pharmaceutical research much attention has been focused on the efficient and diverse synthesis of this class of compounds. ${ }^{1-3}$

The most prevalent way to γ-hydroxybutenolide is the photooxidation of the furan moiety under basic conditions. ${ }^{\text {laee. } 3}$ γ-Hydrosybutenolides can also be synthesized from the corresponding butenolides by the aerobic oxidation of butenolidecontaining sugar ${ }^{\text {e }}$ or 4-halobutenolides. ${ }^{\text {ª }}$

Results and Discussion

Based on the reported results, ${ }^{\text {Ta }}$.

Dysidiolide ($\mathrm{C}_{\mathrm{dc}} 25 \mathrm{~A}$ inhibitor)

Petrosaspongiolide M ($h s P \leq A_{2}$ inhibitor)

(hsPLA 2 inhibitor)

Cacospongionolide E (nsPLA A_{2} inthibitor)

Figure 1. Natural γ-hydroxybutenolides.
methy lene- γ-butyrolactone such as 4 a can be transformed into γ-hydroxybutenolide 7 a via the sequential migration of double bond and concomitant aerobic oxidation process (Scheme 1). α-Methylene- γ-butyrolactones ${ }^{4}$ can be synthesized by lactonization ($p-\mathrm{TsOH}$) of the corresponding α -methylene- γ-hydroxyester 3a which can be prepared from the Baylis-Hillman adduct ${ }^{1+6}$ wia the two-step bromination and indium-mediated Barbier reaction protocol. ${ }^{4}$

Cinuamyl bromide 1a was prepared by the reaction of Bay lis-Hillman adduct and HBr as reported (95%). ${ }^{+5}$ Indiummediated Barbier type reaction of $\mathbf{1 a}$ and benzaldehyde (2a) produced $s w n-\mathbf{3 a}$ as the sole compound as reported in 98%. ${ }^{4}$ Treatment of 3a with p-toluenesulfonic acid ($10 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ furnished α-methylene- γ-buty rolactone ta in 95%. ${ }^{4}$ Double bond migration was carried out under the influence of Pd / C under hydrogen balloon atmosphere in ethanol to produce butenolide 5ain 71\%. Fully-reduced compound was not observed in this case (vide infra). As expected 5 a was converted into its 5 -hydroxy derivative 7 a by aerobic oxidation process under the conditions of $\mathrm{K}_{2} \mathrm{CO}_{3}(30 \mathrm{~mol} \%)$ in DMF in good yield (94%). ${ }^{\text {2a.a.e. }}$ Initially we exposed the reaction misture under air stream. however the reaction showed almost same reactivity without bubbling of air. In some cases. especially under the influence of DBU instead of $\mathrm{K}_{2} \mathrm{CO}_{2}$. we observed the formation of a trace amount of hydroperoxide $6 \mathrm{a}^{9}$ which was changed to 7 a by treatment with PPh_{3} quantitatively (vide infra).

The reaction of ta under the same conditions (DMF, $\mathrm{K}_{2} \mathrm{CO}_{3} .90^{\circ} \mathrm{C}$) also produced 7 a in 67% y ield. presumably via the simultaneous double bond isomerization and aerobic oxidation. More preferably, the reaction of α-methylene- $\gamma-$ hydroxyester 3a under the same conditions (DMF. $\mathrm{K}_{2} \mathrm{CO}_{3} .90$ ${ }^{\circ} \mathrm{C}$) gave 7 a in good yield (69%) also. Overall yields of compound 7a were all similar: overall 63% yield for the three-step process (from $\mathbf{3 a}$ via 4 a and $\mathbf{5 a}$): 64% for the two-step sequence (from 3avia $\mathbf{4}$): 69% for direct synthesis from 3a Based on the simplicity and the yield of product 7adirect synthesis from 3 a was found as the best process. However. we observed some unknown compounds during the

$\mathrm{OBU}\left(0.3\right.$ equiv), $\mathrm{CH}_{3} \mathrm{CN}$, it. $5 \mathrm{~h}: 6 \mathrm{a}(1 \%), 7 \mathrm{a}(5 \%), 8 \mathrm{a}(62 \%)$, $9 \mathrm{a}(12 \%)$
$\mathrm{DBU}\left(1.2\right.$ equiv), $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{rt}, 1 \mathrm{~h}: \mathbf{6 a}(14 \%)$, $7 \mathrm{a}(13 \%)$, $8 \mathbf{a}(43 \%)$, $9 \mathrm{a}(8 \%)$
Scheme 1. Optimization of conditions for the conversion of 3a to 7a.
synthesis of 7 a from 3a or 4 a . In order to identify the side products we examined the reactions carefully. When we run the reaction of ta in the presence of DBU ($30 \mathrm{~mol} \%$) in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature. we observed the formation of compounds $6 \mathbf{a}(1 \%) .7 \mathbf{a}(5 \%)$ and diastereomeric dimers. $8 \mathbf{a}(62 \%)$ and $9 \mathbf{a}$ (12%). ${ }^{16}$ With excess amounts of $\operatorname{DBU}(1.2$ equiv) the ratio was changed to increase the amounts of $6 \mathbf{a}(14 \%)$ and $7 a$ (13%). Hydroperoxide 6 a might be the plausible intermediate for the formation of 7a as mentioned above. Dimeric compounds $8 \mathbf{a}$ and $9 \mathbf{a}$ were produced ($51-74 \%$) by conjugate addition of the anion of ta to the exo-methylene moiety of ta The ratio of major and minor was $84: 16$ in both cases. The structures of compound 7a and 8a were assigned unequivocally by their X-ray crỵstal stnictures (Figures 2 and 3). ${ }^{11,12}$

Encouraged by the results. we prepared some analogous α -methylene- γ-hydroxyesters $\mathbf{3 b - i}$ by following the same procedure of 3a and examined the one-pot synthesis of γ hydroxybutenolides and the results are summarized in Table 1. We selected three Baylis-Hillman adducts which were derived from benzaldehyde $\left(\mathrm{R}_{\mathrm{l}}=\mathrm{Ph}\right)$, 4 -chlorobenzaldehyde ($\mathrm{R}_{1}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$) and hexanal ($\mathrm{R}_{1}=\mathrm{C}_{5} \mathrm{H}_{11}$). In the next Barbier reaction we examined six aldehydes namely benzaldehyde $\left(\mathrm{R}_{2}=\mathrm{Ph}\right)$. 2-bromobenzaldehyde $\left(\mathrm{R}_{2}=2-\mathrm{BrC}_{6} \mathrm{H}_{4}\right)$. 4-chlorobenzaldehyde ($\mathrm{R}_{2}=4-\mathrm{ClC}_{6} \mathrm{H}_{4}$). 4-methoxybenzaldehyde (R_{2} $\left.=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)$, 2 -naphthylaldelyde $\left(\mathrm{R}_{2}=2\right.$-naphthyl) and hexanal $\left(\mathrm{R}_{2}=\mathrm{C}_{5} \mathrm{H}_{11}\right)$. In all cases except entries 8 and $9 . \gamma$ hydroxybutenolides 7a-g were prepared successfully in $53-69 \%$ yields. Aryl substituents R_{1} and R_{2} might facilitate both double-bond isomerization and aerobic oxidation process. When R_{1} or R_{2} is pentyl (entries 8 and 9). $\alpha-$ methylene $-\gamma$ butyrolactones $\mathbf{4 h}$ and $\mathbf{+ i}$ were isolated in ligh yields ($94-95 \%$) instead of desired γ-hydroxybutenolides 7 h and $7 \mathbf{i}$.

Figure 2. ORTEP drawing of compound 7a.

Figure 3. ORTEP drawing of compound 8a.

Table 1. Synthesis of γ-hydroxybutenolides

${ }^{\circ}$ Compounds $\mathbf{t h}$ and $\mathbf{t i}$ were isolated in high yields instead of 7 h and $7 \mathbf{i}$.
${ }^{\mathrm{t}}$ Compounds $\mathbf{7 h}$ and $7 \mathbf{i}$ were synthesized from th and $\mathbf{4 i}$ (Scheme 2).

When we subjected the reaction mixture of $\mathbf{3 h}$ for a long time (15 h). as an example, we could isolate 7 h in low yield (22%) , together with dimeric compounds $\mathbf{8 h}(28 \%)$ and 9 h (7%). The reactivity of $\mathbf{3 i}$ was similar and we obtained $7 \mathbf{i}$ $(25 \%) .8 \mathbf{i}(28 \%)$ and $9 \mathbf{i}(2 \%)$ under the same conditions (Scheme 2). Thus, we applied three-step conditions (vide supra) to 3 h and 3i as in Scheme 2, namely lactonization. isomerization and aerobic oxidation. During double-bond isomerization process of $\mathbf{4}$ h and $\mathbf{4 i}$, fully reduced side products were formed a little and contaminated in about 20\% (based on ${ }^{1} \mathrm{H}$ NMR) thus make the separation of pure $\mathbf{5 h}$ and $\mathbf{5 i}$ very difficult. Thus we carried out the isomerization under small size H_{2} balloon and stopped the reaction after 5 h (starting material was remained in appreciable amounts). By using this protocol pure $\mathbf{5 h}$ and $\mathbf{5 i}$ were obtained in 60 and 75%, respectively. The next hydroxylation was carried out with DBU in $\mathrm{CH}_{3} \mathrm{CN}$. Compound 7 i was obtained at room temperature in high yield (93%), while the oxidation of compound 5 h to 7 h required elevated temperature $\left(50^{\circ} \mathrm{C}\right)$ and long reaction time ($2+\mathrm{h}$). By using the three-step protocol.

$3 i(s y n, 84 \%)$
DMF, $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.3 equiv)
$90^{\circ} \mathrm{C}, 15 \mathrm{~h}$ aerobic condilions

Scheme 2. Synthesis of 7 h and $7 \mathbf{i}$ from 3 h and 3 i vio three-step method.
compounds 7 h and $7 \mathbf{i}$ were synthesized elegantly from $\mathbf{3 h}$ and 3 i in $49-65 \%$ overall yields.

As we observed in the case of fa (vide supra. Scheme 1), the formation of dimeric compounds $8 \mathbf{a}$ and $9 \mathbf{a}$ can be regarded as the results of competition between air oxidation to $7 \mathbf{a}$ and conjugate addition reaction to $8 \mathbf{a}$ and $9 \mathbf{a}^{10,13}$ Air oxidation was the principal pathway with $\mathrm{K}_{2} \mathrm{CO}_{2}$ at elevated temperature ($90^{\circ} \mathrm{C}$) while conjugate addition was the major reaction with DBU at room temperature. Thus. for the next examination, we tried conjugate additions of 5 a with some extemal Michael acceptors. methyl acrylate (10a), acrylonitrile (10b). phenyl vinyl sulfone (10c) and 2-cyclohexen-1-one ($\mathbf{1 0 d}$). and the results are summarized in Table 2. As a comparison experiment, the reaction of $5 a$ and $10 a$ was carried out under aerobic conditions (entry 1), and we observed the formation of 7a and 11a. In order to reduce the formation of aerobic oxidation product 7 a the next reactions were carried out under the strictly controlled nitrogen atmosphere (entries 2-5). The corresponding conjugate addition products 11a-d were obtained in good to excellent yields ($66-96 \%$) and

Table 2. Michael addition reaction of butenolide $\mathbf{5 a}$

	$5 \mathrm{a} \xrightarrow{\text { condilions }}$		11d
Entry	Michael aceptor (10)	Conditions ${ }^{\text {a }}$	Products (\%)
1	methyl acrylate (10a)	DBU (0.3 equiv), 10a (3.0 equiv), $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{rt}, 1 \mathbf{h}$	$7 \mathrm{a}(35), 11 \mathrm{a}(42)$
2	10a	DBU (0.3 equiv), 10a (3.0 equiv), $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{N}_{2}, \mathrm{rt}, 1 \mathrm{~h}$	11a(90)
3	acrylonitrile (10b)	DBU (0.3 equiv), 10b (3.0 equiv), $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{N}_{2}, \mathrm{rt}, 1 \mathrm{~h}$	11 b (70)
4	phenyl vinyl sulfone (10c)	DBU (0.3 equiv), $\mathbf{1 0 c}$ (3.0 equiv), $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{N}_{2}$, rt, 1 h	11c (96)
5	2-cyclohexen-1-one (10d)	DBU (0.3 equiv), 10 d (3.0 equiv), $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{N}_{2}, \mathrm{rt}, 1 \mathrm{~h}$	11d (66)

[^0]Table 3. Alkylation of butenolide 5 a

${ }^{2}$ No reaction under DBU conditions. ${ }^{b}{ }_{f}$ values of 13 c and 15 c were very similar and the vields of 13 c 15 c were calculated based on ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture.
we did not observe the formation of 7 a nor the dimeric compounds 8 a and 9 a in these cases.

Alkylation reaction of 5 a with allyl bromide (12a), benzyl bromide ($\mathbf{1 2 b}$) and iodomethane ($\mathbf{1 2 c}$) was also examined. ${ }^{1+}$ Due to the possible resonance structures of the anion of 5 a . alkylation occurred at either α - and γ-positions (Table 3). ${ }^{15}$ The reaction of 5 a and allyl bromide under DBU conditions (entry 1) produced γ-adduct 13a (14%) and α-adduct 14a (67%). The trend was same in the reaction of benzyl bromide (entry 2). and α-adduct $\mathbf{1 + b}(70 \%)$ was the major product. The reaction of 5 a and iodomethane with DBU failed completely presumably due to the salt formation between $\mathrm{CH}_{3} \mathrm{I}$ and DBU ${ }^{16}$ Thus we carried out the reaction under the influence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and obtained $13 \mathrm{c}(5 \%), 14 \mathrm{c}(52 \%)$ and $15 \mathrm{c}(25 \%)$ as in entry 3 (vide infra). In all cases α-adduct was the major product irrespective of the kinds of alkyl halide and base. When we run the reaction with $\mathrm{K}_{2} \mathrm{CO}_{3}$ (entry 3) complete removal of molecular oxygen was very difficult due to the presence of volatile $\mathrm{CH}_{3} \mathrm{I}$. Thus appreciable amounts of γ hydroxybutenolide 7a was formed and reacted with $\mathrm{CH}_{3} \mathrm{I}$ to produce finally γ-ketoester $\mathbf{1 5} \mathrm{c}$. Authentic compound $\mathbf{1 5} \mathrm{c}$ was prepared from the reaction of $7 a$ and $\mathrm{CH}_{3} \mathrm{I}$ (3.0 equiv) in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.2 equiv) in DMF (ft .2 h) in 93% yield.

In summary. we developed an efficient three-step synthetic protocol of γ-hydroxybutenolides starting from the BaylisHillman adducts: (i) bromination, (ii) Barbier reaction and (iii) one-pot $\mathrm{K}_{2} \mathrm{CO}_{3}$-mediated synthesis of γ-hydroxybutenolides. In addition. we showed the synthetic applicability of butenolides including the self-dimerization conjugate addition reaction. and alkylations.

Experimental

General procedure. ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{19} \mathrm{C}$ NMR (75 MHz) spectra were recorded in CDCl_{3}. The signal positions are reported in parts per million relative to TMS (o scale) used as an internal standard. \mathbb{R} spectra are reported in cm^{-1}. Mass spectra were obtained from the Korea Basic Science Institute (Gwangju branch). Melting points are uncorrected. The elemental analyses were carried out at Korea Research Institute of Chemical Technology. Daejeon. Korea. All reagents were purchased from commercial sources and used without further treatment. The separations were carried out by flash column chromatography over silica gel (230-400 mesh ASTM).

Organic extracts were dried over anhydrous MgSO_{4} and the solvents were evaporated on a rotary evaporator under water aspirator pressure.

Typical procedure for the synthesis of $3 a^{+2}$ To a stirred solution of $\mathbf{1 a}(765 \mathrm{mg}, 3.0 \mathrm{mmol})$ and benzaldehyde ($\mathbf{2 a} .477$ mg. 4.5 mmol) in aqueous THF ($1: 1.5 \mathrm{~mL}$) was added indium powder ($41+\mathrm{mg} .3 .6 \mathrm{mmol}$) and stirred at room temperature for 1 h . After extractive workup and column chromatographic purification process (hexanes/EtOAc, 8:1) sv-3a was isolated as colorless oil. 829 mg (98%). Other compounds $\mathbf{3 b}$-i were prepared similarly and the spectroscopic data of 3a-i are as follows.

Compound $\mathbf{3 a}{ }^{\text {te }}$: Yield 98% : colorless oil: \mathbb{R} (film) 3503. 1717. 1249, $1144 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) ~ \hat{\delta} 2.30(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, \mathrm{IH}) .3 .45(\mathrm{~s} .3 \mathrm{H}) .4 .26(\mathrm{dd}, J=8.1$ and $0.9 \mathrm{~Hz}, \mathrm{IH})$, $5.18(\mathrm{dd}, J=8.1$ and 3.6 Hz .1 H$) .5 .74(\mathrm{~d}, J=0.9 \mathrm{~Hz} .1 \mathrm{H}) .6 .18$ (d. $J=0.9 \mathrm{~Hz} .1 \mathrm{H}) .7 .16-7.30(\mathrm{~m} .10 \mathrm{H}):{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} .75\right.$ $\mathrm{MHz}) ~$ oे 51.63. 54.03. 75.41, 126.69, 126.80, 126.90. 127.48. 127.96. 128.23. 129.06, 138.56. 140.93, 142.03, 166.78; ESIMS mz $283\left(\mathrm{M}^{-}+1\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}: \mathrm{C} .76 .57$. H. 6.43. Found: C. 76.45 ; H. 6.67 .

Compound $\mathbf{3 b}^{\text {4i: }}$: Yield 97% : colorless oil: IR (film) 3498. $1714,1+54,1250.114+, 1028 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300\right.$ $\mathrm{MHz}) \hat{o} 1.13(\mathrm{t} . J=7.2 \mathrm{~Hz} .3 \mathrm{H}) .2 .11$ (br s, 1 H), $3.94-4.05$ (m. $2 \mathrm{H}) .4 .30(\mathrm{dd} . J=7.8$ and 0.9 Hz .1 H$), 5.26$ (d. $J=7.8 \mathrm{~Hz}$. $1 \mathrm{H}) .5 .78(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d} . J=0.9 \mathrm{~Hz} .1 \mathrm{H})$. 7.20-7.33 (m. 10 H): ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$) $\hat{\text { oे }} 13.92$. $54.23,60.73$. 75.67 . 126.53. 126.94, 127.10. 127.69. 128.16, 128.43. 129.18. 138.68, 141.29, 142.04, 166.45: ESIMS $m z$ $297\left(\mathrm{M}^{+}+1\right)$.

Compound 3c: Yield 92%; colorless oil: IR (film) 3489 , 1714. 1492. $1250.1144 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \hat{\delta}$ $2.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.57(\mathrm{~s} .3 \mathrm{H}) .4 .23(\mathrm{~d} . J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}$, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}) .5 .81(\mathrm{t} . J=0.9 \mathrm{~Hz} .1 \mathrm{H}) .6 .24(\mathrm{~d} . J=0.9 \mathrm{~Hz}$. $1 \mathrm{H}) .7 .19-7.31(\mathrm{~m}, 9 \mathrm{H})$) ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3 .}, 75 \mathrm{MHz}\right) \delta 51.87$, $53.58,75.31,126.69,127.09$. 127.78, 128.21, 128.36. 130.66, 132.80. 137.04, 140.78, 142.03. 166.80: ESIMS mz 317 $\left(\mathrm{M}^{-}+1\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{1}: \mathrm{ClO}_{3}:$ C. $68.25: \mathrm{H}, 5.41$. Found: C. 68.49: H. 5.77.

Compound 3d: Yield 86%; white solid, mp $108-110^{\circ} \mathrm{C}$: IR $(\mathrm{KBr}) 3492,1716,1145 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3,}, 300 \mathrm{MHz}\right) \hat{\delta}$ $2.26(\mathrm{~d}, J=4.5 \mathrm{~Hz}, \mathrm{IH}) .3 .6 \mathrm{l}(\mathrm{s}, 3 \mathrm{H}) .4 .45(\mathrm{~d}, J=5.7 \mathrm{~Hz}, \mathrm{IH})$. $5.61(\mathrm{dd}, J=5.7$ and 4.5 Hz .1 H$) .6 .08(\mathrm{~s}, 1 \mathrm{H}), 6.37(\mathrm{~s} .1 \mathrm{H})$. $7.08-7.3 \mathrm{I}(\mathrm{m} .8 \mathrm{H}) .7 .52-7.55(\mathrm{~mm} . \mathrm{IH}):{ }^{1 / 3} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} .75$
$\mathrm{MHz}) \delta 51.77,51.99,73.95,122.92$. 126.88, 127.28. 127.29. 128.33. 128.56. 129.12, 129.49. 132.69, 137.40. 140.68. 140.99. 167.12: ESIMS mz $361\left(\mathrm{M}^{-}+1\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{1}=\mathrm{BrO}_{3}$: C. 59.85 ; H. 4.74. Found: C. 59.48: H, 4.83.

Compound $3 \mathrm{e}^{\text {til }}$: Yield 87% colorless oil: \mathbb{R} (film) 3486. $1716.1493,1143 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR (CDCl 3.300 MHz$) \delta 2.30(\mathrm{~d}$, $J=3.6 \mathrm{~Hz} . \mathrm{IH}) .3 .56(\mathrm{~s} .3 \mathrm{H}) .4 .21(\mathrm{dd} . J=7.8$ and 0.9 Hz .1 H$)$. $5.22(\mathrm{dd}, J=7.8$ and 3.6 Hz .1 H$) .5 .77(\mathrm{t}, J=0.9 \mathrm{~Hz} .1 \mathrm{H}) .6 .22$ (d. $J=0.9 \mathrm{~Hz} .1 \mathrm{H}), 7.18-7.33(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3,} 75\right.$ MHz) $\mathrm{o} 51.83,54.39 .74 .83,127.00$. 127.20, 128.21. 128.25. 128.46. 129.11. 133.23, 138.17, 140.61. 140.78. 166.82: ESIMS mz $317\left(\mathrm{M}^{-}+1\right)$.

Compound $3 \mathrm{f}^{\text {4d }}$: Yield 88%; colorless oil; IR (film) 3504 . 1718. $1514.1250 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 2.03$ (br s. 1 H$) .3 .57(\mathrm{~s} .3 \mathrm{H}) .3 .77(\mathrm{~s} .3 \mathrm{H}) .4 .28(\mathrm{~d} . J=8.1 \mathrm{~Hz} .1 \mathrm{H}) .5 .21$ (d. $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s} .1 \mathrm{H}) .6 .21(\mathrm{~s}, 1 \mathrm{H}) .6 .80-6.85(\mathrm{~m}$. 2H). 7.20-7.36 (m, 7 H$)$: ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta 51.82$. $54.26,55.16 .75 .33 .113 .57 .126 .67$. 127.13, 128.16, 128.49. 129.10. 134.11, 138.88, 141.09, 159.08. 166.91: ESIMS mz $313\left(\mathrm{M}^{+}+1\right)$.

Compound 3g: Yield 90\%: colorless oil: IR (film) 3463 . 2925. 2854, 1716, 1464, $1259 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ MHz) $2.27(\mathrm{br} \mathrm{s}, \mathrm{lH}), 3.46(\mathrm{~s} .3 \mathrm{H}) .4 .39(\mathrm{~d} . J=7.8 \mathrm{~Hz}, \mathrm{lH})$, $5.38(\mathrm{~d} . J=7.8 \mathrm{~Hz} . \mathrm{IH}) .5 .80(\mathrm{~s} .1 \mathrm{H}), 6.19(\mathrm{~s} .1 \mathrm{H}) .7 .22-7.34$ $(\mathrm{m}, 5 \mathrm{H}), 7.40-7.45(\mathrm{~m} .3 \mathrm{H}) .7 .66(\mathrm{~s}, 1 \mathrm{H}) .7 .30-7.79(\mathrm{~m} .3 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right)$ ò $51.77 .54 .22,75.76,124.65$. 125.85. 125.97, 126.15, 126.90. 127.19, 127.57, 127.95. 128.03. 128.50, 129.19, 132.98. 133.00, 138.48, 139.45. 140.94. 166.89: ESIMS mz 333 ($\mathrm{M}^{-}+1$). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{O}_{3}$: C. 79.50: H, 6.06. Found: C. 79.43: H, 6.43.

Compound $3 h^{\text {th }}$: Yield 69% : colorless oil: \mathbb{R} (film) 3528. 2953. 2931, 2857. 1721, 1252. $1146 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$. $300 \mathrm{MHz}) \delta 0.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.32(\mathrm{~m} .4 \mathrm{H})$. $1.36-1.39(\mathrm{~m} .1 \mathrm{H}) .1 .45(\mathrm{~d} . J=5.0 \mathrm{~Hz} .1 \mathrm{H}) .1 .50-1.56(\mathrm{~m}$. $2 \mathrm{H}) .3 .68(\mathrm{~s} .3 \mathrm{H}) .3 .91(\mathrm{~d}, J=6.5 \mathrm{~Hz} .1 \mathrm{H}), 4.13-4.14(\mathrm{~m}, 1 \mathrm{H})$. $5.88(\mathrm{~s} . \mathrm{IH}) .6 .36(\mathrm{~s} .1 \mathrm{H}) .7 .22-7.26(\mathrm{~m} .1 \mathrm{H}) .7 .29-7.33(\mathrm{~m}$. $4 \mathrm{H}):{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta 13.99 .22 .58,25.57 .31 .71$. $35.35,51.94,52.46 .72 .74,126.04,127.03$. 128.50. 129.27. 138.86. 141.71. 167.25: ESIMS $m z 277\left(\mathrm{M}^{-}+1\right)$.

Compound 3i: Yield 84\%: colorless oil; IR (film) 3461. 2956. 2931. 2859. 1713. $1151 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3} .300\right.$ $\mathrm{MHz}) \delta 0.82(\mathrm{t} . J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-1.26(\mathrm{~m} .6 \mathrm{H}) .1 .29(\mathrm{t} . J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}$). $1.50-\mathrm{l} .66$ (m. 2H). 2.83 (d. $J=3.0 \mathrm{~Hz} .1 \mathrm{H}$). $2.92-2.99(\mathrm{~m}, 1 \mathrm{H}) .4 .19(\mathrm{q} . J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .4 .84(\mathrm{dd}, J=5.1$ and 3.0 Hz .1 H$), 5.42(\mathrm{dd} . J=1.2$ and 0.9 Hz .1 H$) .6 .22(\mathrm{~d}, J=$ $1.2 \mathrm{~Hz} . \mathrm{IH}) .7 .19-7.33(\mathrm{~m} .5 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right)$ ठ̀ 13.97. 14.12. 22.45, 27.03, 27.34, 31.75, 49.37. 60.94. 76.44. 126.47, 126.76, 127.15. 127.91, 140.89, 142.65. 168.03: ESIMS mz $291\left(\mathrm{M}^{+}+1\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{2} \mathrm{O}_{3}: \mathrm{C} .74 .45$; H. 9.02. Found: C. 74.77: H. 9.34.

Typical procedure for the synthesis of compound 7a A mixture of $3 \mathrm{a}(564 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(83 \mathrm{mg} .0 .6$ mmol) in DMF (1.5 mL) was heated to $90^{\circ} \mathrm{C}$ for 6 h . After extractive workup and column chromatographic purification process (hexanes/EtOAc. 7:1) 7a was isolated as colorless oil. $367 \mathrm{mg}(69 \%)$. Other γ-hydroxybutenolides $7 \mathrm{c}-\mathrm{g}$ and butyrolactones th and $\mathbf{t i}$ were prepared similarly and the spectroscopic data of $7 \mathrm{a} .7 \mathrm{c}-\mathrm{g} .4 \mathrm{~h}$ and $\mathbf{+ i}$ are as follows.

Compound 7a ${ }^{2 b}$. Yield 69%; pale yellow solid, mp 169-171 ${ }^{\circ} \mathrm{C}:$ IR (KBr) $3253,2924,1734,1448.1340,1238,1138 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 2.05$ (s. 3 H). 4.23 (br s. 1 H). $7.29-7.33(\mathrm{ml}, 8 \mathrm{H}), 7.40-7.43(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} .75\right.$ $\mathrm{MHz})$ 10.04. 106.05. 125.37. 125.83. 128.47 (2C), 128.61. 129.28. 129.60. 130.53, 137.14, 158.62, 172.58: ESIMS $m z$ $267\left(\mathrm{M}^{+}+1\right)$. Anal. Calcd for $\mathrm{C}_{1}: \mathrm{H}_{14} \mathrm{O}_{3}$: C. 76.68: H. 5.30. Found: C. 76.46: H, 5.12.

Compound 7c: Yield 66\%: pale yellow solid, mp 152-153 ${ }^{\circ} \mathrm{C}: \mathbb{R}(\mathrm{KBr}) 3357,1741, \mathrm{~cm}^{-1} \cdot{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{\underline{2}} .300 \mathrm{MHz}\right) \hat{\delta}$ $2.00(\mathrm{~s}, 3 \mathrm{H}) .5 .55(\mathrm{brs}, 1 \mathrm{H}), 7.25-7.33(\mathrm{~m}, 7 \mathrm{H}), 7.36-7.41(\mathrm{~m}$. $2 \mathrm{H}):{ }^{1,5} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 9.96$. 106.52. 125.53. 125.76. 128.47. 128.73, 128.94, 129.27. 129.97, 135.67, 136.70. 157.76. 173.27: ESIMS mz $301\left(\mathrm{M}^{-}+1\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClO}_{2}$: C. 67.89: H. 4.36. Found: C. 68.04 : H, 4.34.

Compound 7d: Yield 62\%, pale yellow solid, mp 166-168 ${ }^{\circ} \mathrm{C}: \mathbb{R}(\mathrm{KBr}) 3329.2924 .1745 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}. $300 \mathrm{MHz}) \delta 2.02(\mathrm{~s}, 3 \mathrm{H}), 7.21-7.26(\mathrm{~m} .1 \mathrm{H}) .7 .32-7.4+(\mathrm{m}$, 6 H). 7.54 (dd. $J=7.8$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}$). 8.04 (dd. $J=7.8$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 8.58 (brs. 1 H); ${ }^{13} \mathrm{C}$ NMR (DMSO-d $\mathrm{d}_{6}, 75 \mathrm{MHz}$) $\delta 10.02,104.57$. 120.11, 127.11. 127.66, 128.04. 128.52, 129.46. 130.27. 130.61, 131.05, 134.73. 135.38, 155.17. 172.59: ESIMS $m z 345\left(\mathrm{M}^{+}+1\right)$. Anal. Calcd for $\mathrm{C}_{1}: \mathrm{H}_{13} \mathrm{BrO}_{3}$: C. 59.15: H. 3.80. Found: C. 59.46: H. 3.93.

Compound 7e: Yield 65\%: pale yellow solid, mp 129-131 ${ }^{\circ} \mathrm{C}: \operatorname{IR}(\mathrm{KBr}) 3315.1743 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3 .} .300 \mathrm{MHz}\right) \hat{\delta}$ 2.01 (s. 3H). 5.55 (brs. 1H), 7.20-7.25 (m. 2H), 7.31-7.35 (m. $7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{5}, 75 \mathrm{MHz}\right) \delta 9.97$. 106.18. 125.26. 127.40. 128.50. 128.55, 128.57, 129.71. 130.29, 135.12. 135.62. 158.76. 173.34: ESIMS mz $301\left(\mathrm{M}^{-}+1\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClO}_{3}$: C. 67.89: H. 4.36. Found: C. 67.88: H. 4.73 .

Compound 7f: Yield 64\%: pale yellow oil; IR (film) 3350 , 1736. 1514. $1253, \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{5}, 300 \mathrm{MHz}\right) \delta 2.03(\mathrm{~s}$, 3H). 3.77 (s. 3 H). 4.36 (br s. 1H). 6.79-6.82 (m. 2 H), $7.31-7.34(\mathrm{~m} .7 \mathrm{H}){ }^{12}{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 9.99,55.23$, 106.23. 113.77. 125.08. 127.29. 128.44. 128.63. 129.19. 129.53. 130.68, 158.70, 160.16. 172.73: ESIMS mz 297 $\left(\mathrm{M}^{-}+1\right)$ Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{4}: \mathrm{C} .72 .96: \mathrm{H}, 5.44$. Found: C. 73.12: H. 5.67.

Compound 7 g : Yield 53% pale yellow solid, mp 157-159 ${ }^{\circ} \mathrm{C}: \operatorname{IR}(\mathrm{KBr}) 3356.1741 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \hat{\delta}$ $2.08(\mathrm{~s}, 3 \mathrm{H}) .4 .60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.25-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.44-7.52(\mathrm{~m}$. $2 \mathrm{H}) .7 .74-7.80(\mathrm{~m}, 3 \mathrm{H}) .8 .02$ (d. $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$): ${ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right.$) ô $10.10 .106 .29,123.05,125.52 .125 .60$, 126.42. 126.86. 127.57, 128.42, 128.47. 128.54, 128.61, 129.62. 130.50. 132.78, 133.43. 134.41, 158.67, 172.81: ESIMS $m z 317\left(\mathrm{M}^{-}+1\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{O}_{3}: \mathrm{C} .79 .73$; H. 5.10. Found: C. 79.46: H. 5.13

Compound $\mathbf{t h}^{+ \text {c. }}$: Yield 95% : colorless oil: IR (film) 2928 , $1751 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3 .} 300 \mathrm{MHz}\right) \delta 0.80(\mathrm{t} . J=7.0 \mathrm{~Hz}$. $3 \mathrm{H}) .1 .06-1.31(\mathrm{~m} .7 \mathrm{H}) .1 .42-1.46(\mathrm{~m} .1 \mathrm{H}) .4 .35(\mathrm{dt} . J=8.0$ and 2.5 Hz .1 H$), 4.86-4.73(\mathrm{~m} .1 \mathrm{H}), 5.60(\mathrm{~d}, J=3.0 \mathrm{~Hz} .1 \mathrm{H})$, $6.44(\mathrm{~d} . J=3.0 \mathrm{~Hz}, 1 \mathrm{H}) .7 .14-7.15(\mathrm{~m}, 2 \mathrm{H}) .7 .28-7.36(\mathrm{~m}$. $3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.85 .22 .36 .25 .36,31.32$. 32.39, 49.48. 81.76. 124.07. 127.65, 128.67. 129.03. 137.58. 139.13. 170.44; ESIMS $m=245\left(\mathrm{M}^{+}+1\right)$.

Compound +i : Yield 94%; colorless oil; IR (film) 2955, 2931. 2859. 1769. $1147 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3} .500 \mathrm{MHz}\right) \hat{\delta}$
$0.78(\mathrm{t} . J=7.0 \mathrm{~Hz} .3 \mathrm{H}), 0.95-1.00(\mathrm{~m}, 1 \mathrm{H}) .1 .06-1.28(\mathrm{~m}, 7 \mathrm{H})$. $3.21-3.25(\mathrm{~m} .1 \mathrm{H}), 5.59(\mathrm{~d} . J=7.5 \mathrm{~Hz}, \mathrm{lH}) .5 .60(\mathrm{~d} . J=2.5$ $\mathrm{Hz} .1 \mathrm{H}), 6.32$ (d. $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) .7 .21-7.22(\mathrm{~m}, 2 \mathrm{H})$. 7.32-7.37 (m, 3H): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3,}, 125 \mathrm{MHz}\right) \delta 13.76$. 22.14. 25.77. 28.70. 31.30. 44.43. 82.06. 121.70. 126.16. 128.28. 128.32, 135.91. 139.15, 170.51; ESIMS mz 245 $\left(\mathrm{M}^{-}+1\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{2}\left(\mathrm{O}_{2}: \mathrm{C}, ~ 78.65:\right.$ H. 8.25. Found: C. 78.54 ; H. 8.06 .

Compounds $4 \mathrm{a}, 5 \mathrm{a}$ and 6 a were synthesized as in Scheme 1 , and the spectroscopic data of these compounds are as follows.

Compound $4 \mathrm{a}^{4 c, e}$. Yield 95% : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3 .} .300 \mathrm{MHz}\right)$ $\hat{\delta}+67(\mathrm{dt} . J=8.4$ and $3.0 \mathrm{~Hz} . \mathrm{IH}) .5 .78(\mathrm{~d} . J=3.0 \mathrm{~Hz} .1 \mathrm{H})$. $5.84(\mathrm{~d} . J=8.4 \mathrm{~Hz} .1 \mathrm{H}) .6 .52(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.77$ (m. 2H). 6.82-6.86 (m. 2H). 7.03-7.13 (m, 6H): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta 51.91 .82 .53$. 124.82, 125.82, 127.34. 127.86. 127.91, 128.13, 129.23. 136.10, 136.28, 137.91. 170.71: ESIMS $m z 251\left(\mathrm{M}^{+}+1\right)$.

Compound $5 \mathrm{a}^{\mathrm{b} \cdot \mathrm{d}}$: Yield 71\%; colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3 .} 300 \mathrm{MHz}\right) \delta 2.16(\mathrm{~d} . J=2.1 \mathrm{~Hz}, 3 \mathrm{H}) .6 .18(\mathrm{dd} . J=3.6$ and 1.5 Hz .1 H$), 7.20-7.31(\mathrm{~m}, 7 \mathrm{H}) .7 .32-7.38(\mathrm{~m} .3 \mathrm{H})$: ESIMS mz $251\left(\mathrm{M}^{-}+1\right)$.

Compound 6a: Yield 14% white solid, mp $155-157^{\circ} \mathrm{C}:$ IR (film) $3246,2923.1751 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} .300 \mathrm{MHz}$) $\bar{\delta}$ $2.04(\mathrm{~s} .3 \mathrm{H}) .7 .28-7.33(\mathrm{~m} .4 \mathrm{H}) .7 .40(\mathrm{~s} .6 \mathrm{H}) .8 .95(\mathrm{~s} .1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 9.90,111.88,126.33,127.43$. 128.40. 128.63, 128.66, 129.69. 129.86, 130.43. 133.28. 156.29. 171.76: ESIMS mz $283\left(\mathrm{M}^{-}+1\right)$. Anal. Calcd for $\mathrm{C}_{1}: \mathrm{H}_{14} \mathrm{O}_{4}: \mathrm{C} .72 .33: \mathrm{H}, 5.00$. Found: C. $72.48: \mathrm{H}, 4.84$.

Typical procedure for the synthesis of compound 5 h A mixture of th ($24+\mathrm{mg} .1 .0 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(15 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was stirred to room temperature for 5 h under hydrogen balloon. After removal of solvent and column chromatographic purification process $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CHCl}_{3}, 1: 1\right)$ 5 h was isolated as colorless oil. 147 mg (60%). When we used different solvent system for the purification of $\mathbf{5 h}$ the separation from the remaining th was very difficult. Compound $\mathbf{5} \mathbf{i}$ was prepared similarly and the spectroscopic data of $\mathbf{5 h}$ and 5 i are as follows.

Compound 5h: Yield 60\%: colorless oil: IR (film) 2928. $1751 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3 .} .300 \mathrm{MHz}\right) \delta 0.83(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) .1 .17-1.25(\mathrm{~m} .4 \mathrm{H}) .1 .35-1.46(\mathrm{~m} .3 \mathrm{H}) .1 .77-1.83(\mathrm{~m}$. $1 \mathrm{H}) .2 .04(\mathrm{~s}, 3 \mathrm{H}), 5.32-5.34(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.35(\mathrm{~m}, 2 \mathrm{H})$. 7.43-7.51 (m. 3 H). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3 .} .75 \mathrm{MHz}\right) \hat{0} 9.95 .13 .88$. $22.36,24.15,31.34 .32 .93 .81 .82,123.67 .127 .73,129.01$. 129.68. 131.71. 159.50, 174.62: ESIMS mz $245\left(\mathrm{M}^{+}+1\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{2}:$ C. 78.65 : H, 8.25. Found: C. 78.37 : H, 8.02.

Compound 5i: Yield 75\%: colorless oil: IR (film) 2930. $1757 \mathrm{~mm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 0.85(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}) .1 .15-1.47(\mathrm{~m} .6 \mathrm{H}) .1 .91$ (s. 3 H). 1.95-2.04 (m. 1H). $2.28-2.38(\mathrm{~m} .1 \mathrm{H}) .5 .68(\mathrm{~d}, J=1.5 \mathrm{~Hz} .1 \mathrm{H}) .7 .17-7.23(\mathrm{~m}$. 2H). 7.34-7.42 (m, 3H): $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,75 \mathrm{MHz}\right) ~ \delta 9.02$. 14.08. 22.46. 26.86. 27.48. 31.75. 84.37. 123.25. 127.20. 129.16. 129.50, 135.30. 163.52, 175.25; ESIMS mz 245 $\left(\mathrm{M}^{-}+1\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{2}\left(\mathrm{O}_{2}: \mathrm{C}, ~ 78.65:\right.$ H. 8.25 . Found: C, 78.96 ; H. 8.54

Typical procedure for the synthesis of compound 7h. A mixture of $5 \mathbf{h}$ (122 mg .0 .5 mmol) and DBU (76 mg .0 .5
nmol) in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was heated to $50^{\circ} \mathrm{C}$ for 24 h . After aqueous workup and column chromatographic purification process (hexanes/EtOAc. 10:1) 7h was isolated as colorless oil, $111 \mathrm{mg}(85 \%)$. Compound 7 i was prepared similarly and the spectroscopic data of 7 h and 7 i are as follows.

Compound 7 h : Yield 85%; colorless oil; IR (film) 3359, $2925.1739 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 0.79(\mathrm{t} . J=6.6$ Hz. 3H). 1.16-1.23 (m, 4H), 1.28-1.35 (m. 2H). 1.73-1.83 (m, $\mathrm{lH}) .1 .93-1.99(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 3.48$ (br s. 1 H), 7.43-7.50 (m, 3H). $7.59-7.64(\mathrm{~mm} .2 \mathrm{H})$: ${ }^{13} \mathrm{C}^{\mathrm{C}} \mathrm{NMR}\left(\mathrm{CDCl}_{3} .75\right.$ MHz) $\delta 10.01,13.79,22.27,22.53,31.31$. 36.94. 107.41, 125.86. 128.44. 128.76, 129.80, 130.86, 156.96, 172.01: ESIMS $m: 261\left(\mathrm{M}^{-}+1\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{2} \mathrm{O}_{3}: \mathrm{C} .73 .82$; H. 7.74. Found: C. 73.59: H. 7.57.

Compound 7i: Yield 93\%: colorless oil: IR (film) 3367. 2956, 2930, 2862. $1742.1451 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3} .500$ $\mathrm{MHz}) \delta 0.79(\mathrm{t} . J=7.0 \mathrm{~Hz} .3 \mathrm{H}), 1.12-1.22(\mathrm{~m}, 5 \mathrm{H}), 1.26-1.36$ (m. 1 H), $1.84(\mathrm{~s} .3 \mathrm{H}), 2.13-2.22(\mathrm{~m}, 2 \mathrm{H}) .4 .40(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.35-7.38(\mathrm{~m} .3 \mathrm{H}) .7 .43-7.46(\mathrm{~m} .2 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3} .125$ MHz) ò 8.60. 13.77. 22.07, 25.79, 26.98, 31.73. 106.28, 124.12. 125.64. 128.49, 129.19. 136.98, 163.27, 173.66; ESIMS $m \geq 261\left(M^{-}+1\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{3}: \mathrm{C} .73 .82$: H. 7.74. Found: C, 73.67 ; H. 7.92.

Typical procedure for the synthesis of compound $8 a$ and $9 a$. A mixture of $4 \mathrm{a}(250 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{DBU}(46 \mathrm{mg} .0 .3$ mmol) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was stirred at room temperature for 5 h . After aqueous workup and column chromatographic purification process (hexanes/ether, $5: 1$) 8 ($156 \mathrm{mg} .62 \%$) and $9 \mathbf{a}(31 \mathrm{mg} .12 \%)$ were isolated as colorless oils together with small amounts of 6 a and 7 a Compounds $8 \mathrm{~h}, 8 \mathrm{i}, 9 \mathrm{~h}$ and 9 i were prepared similarly under the conditions of $\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{DMF}$ at $90^{\circ} \mathrm{C}$ from 3 h and 3 i (Scheme 2), and the spectroscopic data of $8 \mathrm{a} 9 \mathrm{a} \mathbf{8 h}, 9 \mathrm{~h} .8 \mathrm{a}$ and 9 i are as follows.

Compound 8a: Yield 62% : white solid. mp $174-176^{\circ} \mathrm{C}$: IR $(\mathrm{KBr}) 1759 \mathrm{~cm}^{-1} \cdot{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.93(\mathrm{~s}, 3 \mathrm{H})$, 2.33 (dd. $J=15.0$ and $9.6 \mathrm{~Hz}, \mathrm{IH}$). 2.99 (dd. $J=15.0$ and 1.5 $\mathrm{Hz} .1 \mathrm{H}) .3 .22$ (ddd. $J=9.6,7.5$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd} . J=$ 7.5 and $5.1 \mathrm{~Hz}, \mathrm{IH}$). 5.81 (d. $J=5.1 \mathrm{~Hz}, \mathrm{IH}) .6 .78-6.80(\mathrm{~m}$. $2 \mathrm{H}) .6 .86-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.94-7.25(\mathrm{~m} .13 \mathrm{H}) .7 .30-7.40(\mathrm{~m}$. $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{5}, 75 \mathrm{MHz}\right)$ ó 9.75.31.55. 43.10, 52.64, 83.41, 90.27, 125.24, 125.34. 125.77, 127.24, 127.38. 127.83. 127.92. 128.18. 128.32, 128.39, 128.71 (2C), 129.39, 131.01. 133.84. 135.34. 137.52, 163.79, 173.46, 177.75: ESIMS $m z$ $501\left(\mathrm{M}^{+}+1\right)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{O}_{4}$: C. 81.58 ; H. 5.64 . Found: C. 81.26: H, 5.48.

Compound 9a: Yield 12% : white solid. mp 209-211 ${ }^{\circ} \mathrm{C}$: IR $(\mathrm{KBr}) 1759 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.74(\mathrm{~s}, 3 \mathrm{H})$, $2.31(\mathrm{dd} . J=14.7$ and 9.0 Hz .1 H$), 3.01-3.14(\mathrm{~m} .2 \mathrm{H}) .4 .10(\mathrm{t}$. $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53-6.55(\mathrm{~m} .2 \mathrm{H})$, $6.70-6.73$ (m. 2 H), 6.77-6.80 (m. 2 H), 6.92-6.99 (m. 5 H). $7.05-7.07(\mathrm{~m} .3 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \hat{\delta} 9.4,37.52,42.61 .52 .09,82.90$, 89.72. 124.34. 125.54, 125.81. 126.81, 127.58. 127.79. 127.82. 128.08. 128.32, 128.37, 128.49. 128.56, 129.23, 131.09. 135.28. 135.75, 136.20. 165.49, 173.02, 178.99: ESIMS $m z 501(M+1)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{O}_{4}$: C. 81.58 ; H. 5.64. Found: C, 81.23 ; H. 5.92 .

Compound $\mathbf{8 h}$: Yield 28% : white solid. mp $94-96{ }^{\circ} \mathrm{C}$: IR
(KBr) 2929, $1751 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) ~ \delta ~ \delta$ $0.73-0.82(\mathrm{~m} .6 \mathrm{H}) .0 .98-1.29(\mathrm{~m} .12 \mathrm{H}) .1 .37-1.52(\mathrm{~m} .4 \mathrm{H})$. $1.79(\mathrm{dd} . J=15.6$ and $9.9 \mathrm{~Hz}, 1 \mathrm{H}) .1 .93$ (s.3H). 2.43 (d. $J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}) .2 .74-2.80(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{dd} . J=7.8$ and 2.1 Hz , (H). $+.56-4.62(\mathrm{~m} .1 \mathrm{H}) .7 .08-7.14(\mathrm{~m} .2 \mathrm{H}) .7 .22-7.36(\mathrm{~m}$. 5H). 7.39-7.49 (m, 3H): $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,75 \mathrm{MHz}\right) \delta 9.89$. 13.80. 13.81. 22.23, 22.27. 22.29. 25.29. 30.68. 30.93, 31.33. $31.38,37.15 .42 .68 .50 .64,83.53$. 91.17. 127.42. 127.58. 127.63. 128.60, 129.11 (2C). 129.49. 131.42, 134.78, 162.06. 173.38. 178.16: ESIMS mz $489\left(\mathrm{M}^{-}+1\right)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{4}$: C. 78.65 : H, 8.25. Found: C. 78.34: H, 8.03 .

Compound 9 h : Yield 7%, white solid. mp $99-101^{\circ} \mathrm{C}:$ IR (KBr) 2954. 2928. $1755 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $0.78-0.92(\mathrm{~m} .6 \mathrm{H}) .0 .99-1.43(\mathrm{~m} .16 \mathrm{H}) .1 .78(\mathrm{~d} . J=14.7 \mathrm{~Hz}$. 1H). 1.81 (s. 3 H). 2.32 (dd. $J=14.7$ and 6.6 Hz .1 H). 3.19-3.26($\mathrm{m}, 1 \mathrm{H}) .3 .66(\mathrm{t} . J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .4 .57-4.64(\mathrm{~m}, \mathrm{lH})$. 7.15-7.23 (m. 4 H$) \cdot 7.27-7.48(\mathrm{~m}, 6 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} .75\right.$ $\mathrm{MHz})$ 万 9.84 . 13.86, 13.94. 22.39, 22.52. 25.52, 29.69. 30.80 . 31.33, $31.48 .34 .20 .38 .10,41.48 .50 .72 .82 .36,89.95$. 126.00. 127.60, 127.67, 128.28. 128.90, 129.07, 129.47. 131.59. 136.56, 162.73. 172.96, 178.69; ESIMS mz 489 $\left(\mathrm{M}^{-}+1\right)$. Anal. Calce for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{O}_{4}: \mathrm{C}, ~ 78.65:$ H. 8.25 . Found: C, 78.77 ; H. 8.50 .

Compound 8i: Yield 28% : white solid, mp $98-100^{\circ} \mathrm{C}$: IR (KBr) $2955.2930 .1759 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $0.68(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .0 .80(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .0 .83-0.91(\mathrm{~m}$. $3 \mathrm{H}) .0 .93-0.99(\mathrm{~m} .4 \mathrm{H}) .1 .14-1.27(\mathrm{~m} .7 \mathrm{H}) .1 .86(\mathrm{~s} .3 \mathrm{H}) .1 .99$ (dd, $J=15.0$ and 10.5 Hz .1 H$), 2.17-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.34$ (m. IH). $2.70(\mathrm{dt} . J=10.5$ and 2.5 Hz .1 H$) .2 .82-2.87(\mathrm{~m} .1 \mathrm{H})$. 3.05 (dd. $J=15.0$ and 2.5 Hz .1 H$) .5 .63(\mathrm{~d} . J=6.0 \mathrm{~Hz} .1 \mathrm{H})$. 7.19 (d. $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.29(\mathrm{~m} .4 \mathrm{H}) .7 .41(\mathrm{~d} . J=4.0$ $\mathrm{Hz} .4 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 8.99 .13 .76 .13 .77$. $22.04,22.27 .26 .07,26.25 .27 .48 .28 .56,31.48 .31 .87,36.44$, +3.54. 44.97. 83.06. 90.27, 122.04, 125.54. 125.60. 127.96. $128.38,128.51,129.07 .135 .91$ (2C). 167.90, 173.91. 179.64. ESIMS mz $489\left(\mathrm{M}^{+}+1\right)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{O}_{4}$: C. 78.65 : H, 8.25. Found: C, 78.44: H. 8.47.

Compound 9i: Yield 2%, white solid. mp 113-115 ${ }^{\circ} \mathrm{C}$: IR (KBr) 2955. 2930. 2860. $1760 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3 .} 300\right.$ $\mathrm{MHz}) ~ \delta \delta 0.77-0.82(\mathrm{~m} .6 \mathrm{H}) .0 .86-1.01(\mathrm{~m}, 7 \mathrm{H}) .1 .08-1.32(\mathrm{~m}$, $7 \mathrm{H}) .1 .89(\mathrm{~s} .3 \mathrm{H}) .2 .22-2.78(\mathrm{~m} .1 \mathrm{H}), 2.33-2.36(\mathrm{~m} .1 \mathrm{H})$. $2.40-2.46(\mathrm{~m}, \mathrm{lH}), 2.55-2.58(\mathrm{~m} . \mathrm{lH}), 2.61(\mathrm{dd}, J=15.0$ and $8.5 \mathrm{~Hz} .1 \mathrm{H}) .2 .88(\mathrm{dd} . J=15.0$ and $3.5 \mathrm{~Hz} . \mathrm{IH}) .5 .62(\mathrm{~d} . J=6.5$ $\mathrm{Hz} .1 \mathrm{H}) .7 .17(\mathrm{~d} . J=7.5 \mathrm{~Hz} .2 \mathrm{H}), 7.30-7.40(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right)$ ì $9.03 .13 .76 .13 .87,22.01,22.36$. $26.63,26.71 .27 .03,28.45 .31 .79 .31 .90,3+60 .+2.15,46.47$. 82.88. 89.48. 123.88, 124.91. 125.65. 128.18, 128.50. 128.63. 128.82. 135.67. 138.50. 166.28. 173.94, 179.29: ESIMS mz $489\left(\mathrm{M}^{-}+1\right)$. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{410} \mathrm{O}_{4}$: C. 78.65 ; H, 8.25. Found: C. 78.32: H. 8.23.

Typical procedure for the synthesis of compound 11a. To a stirred mixture of 5 a ($250 \mathrm{mg}, 1.0 \mathrm{mmol}$) and methyl acry late (258 mg .3 .0 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was added DBU (46 mg .0 .3 mmol) and stirred at room temperature for 1 h under nitrogen atmosphere. After aqueous workup and column chromatographic purification process (hexanes/EtOAc. 9:1) 11a ($302 \mathrm{mg}, 90 \%$) was isolated as colorless oil. Other compounds $\mathbf{1 1 b}$-d were synthesized similarly and the spectro-
scopic data of 11a-d are as follows.
Compound 11a: Yield 90% : white solid. mp $99-101{ }^{\circ} \mathrm{C}$: IR (KBr) $1755 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{2}, 300 \mathrm{MHz}\right) \delta 1.87(\mathrm{~s} .3 \mathrm{H})$. $2.32-2.48(\mathrm{~m} .3 \mathrm{H}) .2 .67-2.80(\mathrm{~m} .1 \mathrm{H}) .3 .64(\mathrm{~s}, 3 \mathrm{H}) .6 .80-6.83$ (m. 2H) , 7.17-7.20 (m. 2H), 7.30-7.38 (m, 6H): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) ~ \hat{o} 9.62 .28 .53 .31 .19 .51 .81 .89 .75$. 124.79. 125.78. 127.95. 128.51, 128.62 (2C). 129.30, 131.31, 136.79. 163.91. 173.09. 173.60: ESIMS miz 337 (M+1). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{2} \mathrm{O}_{4}: \mathrm{C}, 74.98 ; \mathrm{H} .5 .99$. Found: C. $74.77 ; \mathrm{H}, 6.23$.

Compound 11b: Yield 70\%: white solid mp 151-153 ${ }^{\circ} \mathrm{C}$: \mathbb{R} $(\mathrm{KBr}) 1760 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.87(\mathrm{~s}, 3 \mathrm{H})$, $2.26-2.53(\mathrm{~m} .3 \mathrm{H}) .2 .72-2.82(\mathrm{~m}, ~ 1 \mathrm{H}) .6 .79-6.83(\mathrm{~m}, 2 \mathrm{H})$. $7.10-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.4+(\mathrm{m}, 6 \mathrm{H}){ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} .75\right.$ $\mathrm{MHz}) \hat{\delta} 9.61 .12 .23,32.46 .88 .73$. 118.69. 125.12, 125.53. 127.86. 128.78. 128.87, 128.94, 129.60. 130.66, 135.46. 163.31. 172.97. ESIMS $m z 30+\left(\mathrm{M}^{+}+1\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{1}: \mathrm{NO}_{2}: \mathrm{C} .79 .19:$ H. 5.65 : N. 4.62. Found: C. 79.02: H. 5.86: N, 4.36.

Compound 11c: Yield 96% : white solid. mp 133-135 ${ }^{\circ} \mathrm{C}$: IR (KBr) $1759,1149 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{2} .300 \mathrm{MHz}\right) \delta 1.83(\mathrm{~s}$. $3 \mathrm{H}) .2 .43-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.89(\mathrm{~m}, 1 \mathrm{H}), 3.03-3.13(\mathrm{~m}$, 1H). 3.18-3.28 (m, 1H), 6.75-6.79 (m, 2H), 7.08-7.13 (m. $2 \mathrm{H}) .7 .20-7.42(\mathrm{~m} .6 \mathrm{H}) .7 .53-7.58(\mathrm{~m} 2 \mathrm{H}), 7.63-7.69(\mathrm{~m}, \mathrm{lH})$, $7.85-7.89(\mathrm{~m} .2 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \hat{\delta} 9.51 .29 .14$. $51.39,88.81,124.83,125.50$. 127.77, 127.85, 128.73. 128.76, 128.79. 129.38. 129.49. 130.64. 133.95. 135.68. 138.74. 163.88. 173.01: ESIMS mz $419\left(\mathrm{M}^{+}+1\right)$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}, 71.75 ;$ H. 5.30. Found: C. 71.54: H, 5.21 .

Compound 11d: Yield 66% : white solid, mp 141-143 ${ }^{\circ} \mathrm{C}: \mathbb{R}$ (KBr) 1759. $1714 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.50-1.6 \mathrm{I}(\mathrm{m} .1 \mathrm{H}) .1 .65-1.72(\mathrm{~m} .2 \mathrm{H}) .1 .77(\mathrm{~s} .3 \mathrm{H}) .2 .00-2.07$ (m. 1H). 2.26-2.55 (m. 4H). 2.68-2.77 (m, 1H), 6.82-6.85 (m, 2H). 7.04-7.07 ($\mathrm{m}, 2 \mathrm{H}$), 7.24-7.29 (m, 3H), 7.33-7.41 (m, $3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right)$ ó $9.38 .24 .69 .25 .83,41.01$. $42.06,42.88$. 92.40 . 125.31. 125.41, 127.89. 128.09. 128.41, 128.71. 129.25. 131.29. 136.89. 163.45. 173.63. 210.45: ESIMS $m z 347\left(\mathrm{M}^{-}+1\right)$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{3}: \mathrm{C} .79 .74$; H. 6.40. Found: C. 79.98: H. 6.37.

Typical procedure for the allylation of compound 5a. To a stirred misture of 5 a ($250 \mathrm{mg}, 1.0 \mathrm{mmol}$) and ally bromide (12a. 363 mg .3 .0 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was added DBU (46 mg .0 .3 mmol) and stirred at room temperature for 1 h under nitrogen atmosphere. After aqueous workup and column chromatogmplic purification process (hexanes/ EtOAc, 20:1) $\mathbf{1 3 a}(41 \mathrm{mg}, 14 \%)$ and $14 \mathrm{a}(194 \mathrm{mg}, 67 \%)$ were isolated as colorless oil. Other compounds were synthesized similarly and the spectroscopic data of 13a. 13b. 14a-c and 15 c are as follows.

Compound 13a: Yield 14\%: colorless oil: IR (film) 1757 $\mathrm{cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{5}, 300 \mathrm{MHz}\right) \delta 1.90(\mathrm{~s} .3 \mathrm{H}), 2.82-2.90$ (m. 1H). 3.07-3.15 (m. 1H). 5.07-5.17 (m. 2H). 5.64-5.78 (m. $1 \mathrm{H})$. $6.77-6.83(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.39(\mathrm{~m}$, $5 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right) \delta 9.67 .39 .61,89.61 .120 .29$. 125.22. 126.02. 128.10, 128.47, 128.50. 128.54, 129.18, 130.50. 131.66, 137.57, 163.15, 173.96: ESIMS mz 291 $(\mathrm{M}+1)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{O}_{2} ; \mathrm{C}, 82.73: \mathrm{H}, 6.25$. Found: C, 82.55 ; H. 6.48 .

Compound 13b: Yield 4\%: colorless oil: IR (film) 1755
$\mathrm{cm}^{-1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ ò $1.77(\mathrm{~s} .3 \mathrm{H}), 3.41(\mathrm{~d} . J=$ $13.8 \mathrm{~Hz}, 1 \mathrm{H}) .3 .75(\mathrm{~d} . J=13.8 \mathrm{~Hz}, 1 \mathrm{H}) .6 .80-6.84(\mathrm{~m} .2 \mathrm{H})$. $7.01-7.04(\mathrm{~m} .2 \mathrm{H}) .7 .10-7.41(\mathrm{~m} .11 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3 .} 75$ MHz) $\grave{\mathrm{j}} 9.91 .41 .22 .89 .67,125.73$. 126.36, 127.07, 127.91. 128.45. 128.68. 128.70 (2C) 129.37, 130.69.131.68. 133.98. 138.02. 161.51, 173.71: ESIMS $m z 341\left(\mathrm{M}^{-}+1\right)$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{2}$: C. 84.68: H. 5.92 . Found: C. $84.71:$ H. 6.17 .

Compound 1 ta: Yield 67% : white solid, $\mathrm{mp} 81-82^{\circ} \mathrm{C}$; IR (film) $1797 \mathrm{~cm}^{-1}$: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ ò $1.42(\mathrm{~s} .3 \mathrm{H})$. $2.3+-2.42(\mathrm{~m} .1 \mathrm{H}) .2 .47-2.55(\mathrm{~m} .1 \mathrm{H}) .5 .10-5.19(\mathrm{~m} .2 \mathrm{H})$. $5.68-5.82(\mathrm{~m} .1 \mathrm{H}) .7 .17-7.35(\mathrm{~m} .7 \mathrm{H}) .7 .37 \cdot 7.46(\mathrm{~m} .3 \mathrm{H}){ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ oे 22.48. 40.90, 52.85. 119.54 . 121.4. 126.92, 128.21, 128.31. 128.46, 129.02, 129.08. 129.64. 132.07, 132.35. 146.15, 179.90, ESIMS mz 291 $\left(\mathrm{M}^{-}+1\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2}: \mathrm{C}, ~ 82.73$: H. 6.25. Found: C. 82.63; H. 5.97.

Compound 14b: Yield 70\%: colorless oil: \mathbb{R} (film) 1793 $\mathrm{cm}^{-1} \cdot{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ ò $1.62(\mathrm{~s} .3 \mathrm{H}), 2.93(\mathrm{~d} . J=$ $13.8 \mathrm{~Hz}, 1 \mathrm{H}) .3 .17(\mathrm{~d} . J=13.8 \mathrm{~Hz}, 1 \mathrm{H}) .7 .09-7.14(\mathrm{~m}, 2 \mathrm{H})$. 7.17-7.25 (m. 10 H$), 7.37-7.39(\mathrm{~m}, 3 \mathrm{H}):{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3 .} 75\right.$ $\mathrm{MHz})$ § 23.78, $42.97,53.71,121.15$. 127.02, 127.23. 128.09. 128.12. 128.16, 128.55, 128.84. 129.03, 129.57, 129.74. 132.35. 135.74. $146.78,180.18$: ESIMS mz $3+1\left(\mathrm{M}^{+}+1\right)$. Anal. Calcd for $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$: C. $84.68: \mathrm{H}, 5.92$. Found: C. 84.44 : H, 5.65 .

Compound 14c: Yield 52% : white solid. mp $99-101^{\circ} \mathrm{C}: \mathrm{IR}$ $(\mathrm{KBr}) 1798.1046 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3 .} .300 \mathrm{MHz}\right) ~ क े 1.38$ (s . $6 \mathrm{H}) .7 .18-7.28(\mathrm{~m} .5 \mathrm{H}) .7 .30-7.34(\mathrm{~m} .2 \mathrm{H}) .7 .40-7.45$ (m. $3 \mathrm{H}):{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ oे 22.38. 48.14. 123.67. 126.78. 128.24, 128.29, 128.60. 128.94, 129.07, 129.60. 132.43. 145.25. 181.25: ESIMS mz $265\left(\mathrm{M}^{-}+1\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 81.79 ; H. 6.10. Found: C, 81.86; H. 6.43.

Compound 15c: Yield 93% : white solid, mp $61-62^{\circ} \mathrm{C}$; IR (KBr) 1716. 1668. 1268. $1134 \mathrm{~cm}^{-1}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300\right.$ $\mathrm{MHz})$ o $2.06(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}) .7 .26-7.52(\mathrm{~m}, 8 \mathrm{H})$. 7.92-7.96 (m. 2 H): ${ }^{19} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} .75 \mathrm{MHz}\right)$ o 15.56. $51.99,128.10$. $128.46,128.54$. $128.61,128.68,128.90$. 132.93. 134.83. 135.76. 150.84. 167.62, 196.24: ESIMS mz $281\left(\mathrm{M}^{-}+1\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}$: C. 77.12: H. 5.75 . Found: C, 77.46; H. 5.79.

Acknowledgments. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD. KRF-2007-313-C00417). Spectroscopic data was obtained from the Korea Basic Science Institute. Gwangju branch.

References and Notes

1. (a) Cheung, A. K.: Snapper, M. L. J. Am. Chem. Soc. 2002, 124, 11584-11585. (b) Magnuson, S. R.; Sepp-Lorenzino, L.; Rosen, N.; Danishefsky, S. T. J. Am. Chem. Soc. 1998, 120, 1615-1616. (c) Basabe, P:; Delgado, S.; Marcos, I. S.: Diez, D.: Diego, A.: de Roman, M., Sanz, F.; Utones, I. G. Tetrahedron 2007, 63, 8939-8948. (d) Basabe, P.; Delgado, S:; Marcos, I. S.; Diez, D.; Diego, A.; De Roman, M.; Urones, J. G. J. Org. Chem. 2005, 70 , 9480-9485. (e) Marcos, I. S.: Escola, M. A.: Moro, R. F.: Basabe, P.; Diez, D.; Sanz, F.: Mollinedo, F.; de la IglesiaVicente, T.; Sierra, B. G.; Urones, T. G. Bioorg. Med. Chen.

2007, 15, 5719-5737. (f) Guerrero, M. D.; Aquino, M.; Bruno, I., Terencio, M. C.: Paya, M.; Riccio, R.: Gomez-Paloma, L. J. Med. Chem. 2007, 50, 2176-2184 and further references cited therein.
2. For some recent synthesis of γ-hydroxybutenolides, see: (a) Ma, S., Wu, B.: Shi, Z. J. Oig. Chem. 2004, 69, 1429-1431. (b) Ma, S.; Wu, B.; Ma, Z. Faming Zhuanli Shenqing Gongkai Shumingshu 2004, CN 1526709A (Chem. Abstr: 143, 97252). (c) Holthe, C.; Law, M. P.; Wagner, S.; Breyholz, H.-J.; Kopka, K.; Bremer, C.: Levkan, B.: Schober, O;, Schaters, M. Bioorg. Med. Chem. 2006, 14, 1910-1917. (d) Padakanti, S.: Veeramaneni, V. R.; Pattabiraman, V. R.; Pal, M.; Yeleswarapu, K. R. Tetrahedron Lett. 2002, 43, 8715-8719. (e) Liu, H.-M. Zhang, F.: Zhang, J.: Li, S. Carbohyd: Res. 2003, 338, 1737-1743. (f) Gudipati, V:: Curran, D. P.; Wilcos, C. S. J. Org. Chem. 2006, 71, 3599-3607. (g) Patt, W. C.; Edmunds, J. I.; Repine, J. T.; Berryman, K. A.; Reisdorph, B. R.; Lee, C.; Plummer, M. S.; Shahripour, A.; Haleen, S. J.; Keiser, T. A.; Flymn, M. A.; Welch, K. M.; Reynolds, E. E.: Rubin, R.; Tobias, B.: Hallak, H.; Doherty, A. M. J. Med. Chem. 1997, 40, 1063-1074.
3. For the synthesis of γ-hydroxybutenolides from furans, see: (a) Patil, S. N.; Liu, F. J. Org. Chem. 2007, 72, 6305-6308. (b) Patil, S. N.: Lill, F. Org. Lett. 2007,9, 195-198. (c) Aquino, M.; Bruno, I.; Riccio, R.: Gomez-Paloma, L. Org. Letr. 2006, 8,4831-4834.
4. For the synthesis of a-methylene- γ-butyrolactones, see: (a) Paquette, L. A.; Mendez-Andino, J. Temahedron Letr. 1999, 40, 4301-4304. (b) Lee, K. Y;; Park, D. Y;; Kim, J. N. Bull. Kowean Chem. Soc. 2006, 27, 1489-1492. (c) Lee, A. S.-Y.: Chang, Y.-T.: Wang, S.-H.: Chul, S.-F. Tetrahedron Lert. 2002, 43, 8489-8492. (d) Kabalka, G. W.; Venkataiah, B.; Dong, G. Tetrahedron Lett. 2005, $46,4209-4211$. (e) Kabalka G. W.; Verkataiah, B.: Chen, C. Tetrahedron Lett. 2006, 47, 4187-4189. (f) Kabalka, G. W., Venkataiah, B. Tetrahedron Lett. 2005, 46, 7325-7328. (g) Reid, C. S.; Zhang, Y.; Li, C.-T. Ong. Bionol. Chem 2007, 5, 3589-3591. (h) Yu, S. H.; Ferguson, M. J.; McDonald, R.; Hall, D. G. J. Am. Chem. Soc. 2005, 127, 12808-12809. (i) Ramachandran, P. V.; Garner, G.: Pratihar, D. Org. Lett. 2007, 9, 4753-4756.
5. For the general review on Baylis-Hillman chemistry, see: (a) Basavaiah, D;- Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891. (b) Ciganek, E. In Organic Reactions; Paquette, L. A., Ed.: Joln Wiley \& Sons: New York, 1997. Vol. 51, pp 201-350. (c) Basavaiah, D.: Rao, P. D.: Hyma, R. S. Terrahedron 1996, 52, $8001-8062$ (d) Kim, J. N.; Lee, K. Y. Cum: Org. Chem. 2002, 6, 627-645. (e) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481-1490. (f) Singh, V.; Batra, S. Tetrahedron 2008, 64, $4511-4574$ and further references cited therein.
6. For our recent contributions in Baylis-Hillman chemistry, see: (a) Gowrisankar, S.: Lee, H. S.: Kim, J. M.: Kim, J. N. Terrahedron Lett. 2008, 49, 1670-1673. (b) Kim, T. M.: Kim, K. H.; Kim, T. H.: Kim, J. N. Tetrahedron Lett. 2008, 49, 3248-3251. (c) Gowrisarkar, S.; Lee, H. S.; Lee, K. Y.; Lee, J.-E.; Kim. J. N. Tetrahedron Lett. 2007, 48 , 8619-8622. (d)Lee, H. S.: Kim, S. H.; Kim, T. H.; Kim, J. N. Terrahedron Lett. 2008, 49, 1773-1776. (e) Kim, S. H.; Kim, K. H.: Kim, H. S.; Kim, J. N. Tetrahedron Lett. 2008, 19, 1948-1951. (f) Lee, H. S.; Kim, H. S.; Kim, J. M.; Kim, J. N. Tetrahedron 2008, 64, 2397-2404.
7. For the isomerization of double bond under catalytic hydrogenation conditions, see: (a) Kabalka, G. W., Venkataiah, B. Tetrahedron Let. 2005, 16, 7325-7328 and the compound 5a was reported, see: (b) Shindo, M.; Yoshikawa, T.; Itou, Y.; Mori, S.; Nishii, T.; Shishido, K. Chem. Em: J. 2006, 12, 524-536. (c) Ma, S.: Shi, Z. Chem. Commm, 2002, 54(0-541. (d) Delaunay, J: Orliac-Le Moing, A;; Simonet, J. Tetrahedroh 1988, 44, 7089-7094.
8. For the base-promoted aerobic oxidation process in a similar system, see: (a) Black, W. C.: Bridean, C.; Chan, C.-C.; Charleson, S.: Cromlish, W.: Gordon, R.: Grimm, E. L:: Hughes, G.; Leger, S.; Li, C.-S.; Riendeau, D.; Therien, M.; Wang, Z;

Xu, L.-T.; Prasit, P. Bioorg. Med. Chem. Lett. 2003, 13, 1195-1198. (b) Peters, R.; Althaus, M.; Nagy, A.-L. Org. Biomol. Chem. 2006, 4, 498-509. (c) Watanabe, T.: Ishikawa, T. Tetrahedron Lett. 1999, 10, 7795-7798.
9. For the similar hydroperovides formation, see: (a) Iesce, M. R.: Cemnola, F.; De Lorenzo, F.: Orabona, I.; Graziano, M. L. J. Org. Chem. 2001, 66, 4732-4735. (b) Schobert, R.: Stehle, R.: Milius, W. J. Org. Chem. 2003, 68, 9827-9830. (c) Iesce, M. R.; Graziano, M. L.; Cermola, F.; Scarpati, R. J. Chem. Soc., Chem. Commim. 1991, 1061-1062.
10. For the synthesis of butenolide-butyrolactone and butenolide dimeric compounds, see: (a) Sulikowski, G. A.; Agnelli, F.; Corbett, R. M. J. Org. Chem. 2000, 65, 337-342. (b) Bagal, S. K.: Adlington, R. M.: Baldwin, J. E.; Marquez, R. J. Org. Chem. 2004, 69, $91000-9108$. (c) Bagal, S. K.: Adlington, R. M.: Baldwin, T. E.: Marquez, R.; Cowley, A. Org. Lett. 2003, 5 , 3049-3052. (d) Bagal, S. K.; Adlington, R. M.; Marquez, R.; Cowley, A. R.: Baldwin, T. E. Tetrahedron Lett. 2003, Ht, 4993-4996. (e) Ma, S.: Yu, Z. Org. Lett. 2003, 5, 1507-1510. (f) Coperet, C.: Sugihara, T.: Wu, G.. Shimovana, I.; Negishi, E.-I. J. Am. Chem. Soc. 1995, 117, 3422-3431. (g) Ospina, C. A.; Rodriguez, A. D.: Sanchez, T. A.; Ortega-Barria, E:; Capson, T. L.: Mayer, A. M. S. J. Nat. Prod. 2005, 68, 1519-1526. (h) Kupchan, S. M.; Aynehchi, Y.; Cassady, J. M.; Sclunoes, H. K.: Burlingame, A. L. J. Org. Chem. 1969, 34, 3867-3875.
11. Crystal data of compound 7a: solvent of crystal growth $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, empirical formula $\mathrm{C}_{1}: \mathrm{H}_{14} \mathrm{O}_{3}, \mathrm{Fw}_{w}=266.28$, crystal
dimensions $0.40 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$, orthorhombic, space group Fdd2, $\mathrm{a}=18.2631(19) \AA, \mathrm{b}=35.999(3) \AA, \mathrm{c}=8.2668(7) \AA, a=$ $\left.90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}, V=5435.049\right) A^{3}, Z=16, D_{\text {culcd }}=1.302$ $\mathrm{mg} / \mathrm{m}^{3} . F_{000}=2240, \mathrm{MoK} \alpha(\lambda=0.71073 \AA), R_{1}=0.0512, \mathrm{wR}_{2}=$ $0.1117(I>2 \sigma(I)$). We omitted hydrogen atoms for clarity (Figure 1). The X-ray data has been deposited in CCDC with number 684684 .
12. Crystal data of compound 8a: solvent of crystal growth (MeOH): empirical formula $\mathrm{C}_{3+4} \mathrm{H}_{28} \mathrm{O}_{4}, \mathrm{Fw}_{w}=500.56$, crystal dimensions $0.30 \times 0.30 \times 0.10 \mathrm{~mm}^{3}$, triclinic, space group $\mathrm{P}-1, a=9.3062(3)$ $\AA, \mathrm{b}=9.7502(5) \AA, \mathrm{c}=15.4367(8) \AA, \alpha=82.6350(10)^{\circ}, \beta=$ $83.4040\left(100^{\circ}, \gamma=71.6410(10)^{\circ}, V^{\prime}=1314.29(12) \AA^{3}, Z=2, D_{\text {eald }}=\right.$ $1.265 \mathrm{mg} / \mathrm{m}^{3} \cdot F_{000}=528, \mathrm{MoK} \alpha(\lambda=0.71073 \AA), R_{1}=0.0590$, $w R_{2}=0.1188(I>2 \sigma(I))$. We omitted hydrogen atoms for clarity (Figure 1). The X-ray data has been deposited in CCDC with number 684685.
13. For the Michael type self-dimerization and intermolecular Michael addition reactions of butenolides, see: Okano, T : Chokai, M.: Eguchi, S.; Havakawa, Y. Tetrahedron 2000, 56, 6219-6222.
14. For the synthesis of carbon-chain substituted butenolides, see: (a) Ma, S.; Lu, L.; Lu P. J.Org. Chem. 2005, 70, 1063-1065. (b) Khim, S.-K.; Dai, M.; Zhang, X.: Chen, L.: Pettus, L.: Thakkar, K.; Schultz, A. G. J. Ong. Chem. 2004, 69, 7728-7733.
15. Franck, X.; Figadere, B. Tetrahedron Lett. 2002, 43, 1449-1451.
16. Shieh, W.-C.; Dell, S.; Repic, O. J. Org. Chem. 2002, 67, 2188-2191.

[^0]: ${ }^{\circ}$ Entry 1 was run under aerobic conditions and entries $2-5$ under N_{2} atmosphere.

