Synthesis of Heteromacrocycles as Ligands of a Palladium-Artificial Enzyme and Crystal Structure

Nam Sook Cho, ${ }^{\circ}$ Chun Ho Lee, Young Hoon Kim, Sung Kwon Kang, and You-Soon Lee
Department of Chemistrv, Chungnam National Universitv, Daejeon 305-76t. Korea. E-mail: nsmchoiaicnu.ac.kr Received March 11, 2009, Accepted Mav 14, 2009

Key Words: Metalloenzyme. Molecular recognition, Macrocycles, 5-Annino-3H-1,3.t-thiadiazolin-2-one, 5-Amino-3H-1.3.4-thiadiazolin-2-thione

Molecular recognition is a general principle in nature. and the design of artificial receptors (enzymes) for specific target molecules based on molecular recognition is an important theme in bioorganic chemistry. Enzy mes are often surrounded by a hydrophobic sheath of amino acids that shields them from undesirable hydrolysis and polymerization reactions. and facilitates their normal functions. The mimicking of metalloenzyme active sites are of particular interest. ${ }^{1.3}$ Artificial metalloenzymes possessing molecular-recognition properties have attracted attention since the 1980 s. Some compounds have been utilized for enantioselective sulfoxidation. ${ }^{4.5}$ hydrogenation. ${ }^{6.3}$ or asymmetric ally lic alkylation reactions. ${ }^{8}$

In the present work. we have prepared ligands of a palla-dium-artificial enzyme as amino acid substitutes. 5-Amino$3 H-1,3$.4-thiadiazolin-2-one (1$)^{9}$ and 5-amino-3H-1.3.4-thia-diazolin-2-thione (2) ${ }^{16}$-derived mimics of a metalloenzyme active sites were designed. To provide potential chelation sites to allow the formation of palladium ion complexes. 1.3-benzenedimethanethiol was introduced. ${ }^{11-13}$ In order to form a hydrogen bond and control the size of the macrocycle cavity, an ether linkage was inserted and compounds 1 and 2 were acylated with acyl halide.

1

2

Results and Discussion

The synthesis of ligands containing two units of 5 -amino$3 H-1.3$,-thiadiazolin-2-one (1) were accomplished according to Scheme 1 . The difference between $\mathbf{3 a}$ and $\mathbf{3 b}$ is the length of the chain. which influences the size of the macrocycle cavity. According to the regiospecific N-alkylation of 1 , the reaction of 1 with tri(ethyleneglycol) dimethanesulfonate in the presence of $\mathrm{NaOC}_{2} \mathrm{H}_{5}$ in ethanol gave the N -alkylated product (3b). The formation of 3b was confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The NH signal of compound (1) was replaced by that of NCH_{2} at $\delta 3.90$ and 46.0 in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, respectively. To introduce 1.3 -bezenedimethanthiol. the compound was S-alkylated with $\mathbf{3 b}$ under basic conditions (NaOCH $\left(\mathrm{CH}_{2}\right)_{2}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$. The formation of $\mathbf{4}$ b was also confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. The SH signal of 1,3 -bezene-

1

RT. 24 hrs

3a $n=1$
$3 b n=2$

4a $n=1$
$4 b \mathrm{n}=2$
 $30^{\circ} \mathrm{C}, 90 \mathrm{hrs}$

Scheme 1. Synthesis of heteromacrocycles containing two units of 5-amino-3H-1,3,4-thiadiazolin-2-one ($\mathbf{1}$).

Scheme 2. Synthesis of heteromacrocycles containing two units of 5-amino-3H-1,3,4-thiadiazolin-2-thione (2).
dimethanthiol was replaced by a SCH_{2} at $\delta 2.61$ and 30.8 in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. respectively. 1.3-Benzenedimethanethiol supplies the chelation sites to form complexes with palladium ions. ${ }^{11-13}$

To obtain the target macrocycle containing two 5 -amino3 H -1.3.4-thiadiazoline-2-ones and one 1.3-benzenedimethanethiol from $\mathbf{+ b}$. we attempted Cs^{+}-mediated cyclization. ${ }^{1+}$ which involves $N .{ }^{\prime}$-diacy lation of $\mathbf{4 b}$ at the NH_{2} group of the 1.3,4-thiadiazole rings using diglycolyl chloride with a highdilution technique. Glutaryl chloride was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 4b over a 72 h period. The structure of the macrocycle was established using ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, IR, and $F A B-$ HRMS spectra. The successful macrocyclization of $\mathbf{4 b}$ to $\mathbf{5 b}$ was supported by evidence of N -acylation. which indicated that a NHCOCH_{2} group replaced the NH_{2} functional group at $\delta 11.88$ and 3.84 in the H NMR spectrum. and at $\delta 166.7$ and 45.6 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum. The IR spectrum also displays the carbonyl group of the amide at $1653 \mathrm{~cm}^{-1}$. FAB HRMS spectra clearly supported structure $\mathbf{5 b}$ (729.1869).

The synthesis of ligands containing two 5 -amino-3 $\mathrm{H}-1.3 .+-$ thiadiazolin-2-thione (2) units was accomplished according to Scheme 2. The difference between $6 a$ and $6 b$ is the length of the chain. As $\alpha, \alpha^{\prime}-m$-xylenedithiol is a palladation chelation site, ${ }^{11-13}$ an $\alpha . \alpha \alpha^{\prime}-m$-xylenedithiol moiety was introduced to the macrocyclic compounds to chelate palladium.

According to the regiospecific S-alkylation, compound 2 with the appropriate chloride ($\mathbf{6 a}$ or $\mathbf{6 b}$) in the presence of NaOEt in ethanol gave an ($\$$)-alkylated dimer (7a or 7b). as shown in the previous method. ${ }^{15}$ Again. the difference between 7a and 7b is the length of the chain. which influences the size of the macrocycle cavity. To obtain target macrocycles containing two 2 -amino-5-alkylthio-1.3.4-thiadiazole and one
1.3-benzenedimethanethiol from 2. we attempted Cs^{-}-mediated ${ }^{11 / 13}$ cyclization involving $N N^{\prime}$-diacylation of $7 \mathbf{b}$ at the NH_{2} of the 1,3.4-thiadiazole rings using glutaryl chloride with a high-dilution technique to synthesize ligands of $\mathbf{8 a}$ and $\mathbf{8 b}$. Glutaryl chloride was added to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 7 b over a 20 h period. The structure of the macrocycle was established using ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. IR. and FAB-HRMS. The successful macrocyclization of $\mathbf{7 b}$ to $\mathbf{8 b}$ was supported by evidence of N-acylation which indicated that an NHCOCH_{2} group replaced

Table 1. Crystal data and structure refinement for macrocycle, $\mathbf{8 b}$, $\left[\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{6}\right]$.

Chemical formula	$\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{6}$
Formula weight	761.03
Temperature	$295(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	$a=8.9202(11) \AA, \alpha=76.545(8)^{\circ}$
	$b=9.9488(12) \AA, \beta=84.623(8)^{\circ}$
	$c=21.220(2) \AA, \gamma=83.502(7)^{\circ}$
Volume	$1815.3(4) \AA^{3}$
Z, Calculated density	$2,1.392 \mathrm{Mg} / \mathrm{m}^{3}$
F(000)	800
Crystal size	$0.50 \times 0.32 \times 0.23 \mathrm{~mm}$
Theta range for data collection	1.98 to 26.000°
Reflections collected $/$ unique	$11350 / 7088\left[R_{\text {int }}=0.0227\right]$
Goodness-of-fit on F^{2}	1.034
Final R indices $[I>2 \sigma(I)]$	$R_{1}=0.0675, w R_{2}=0.1864$
R indices (all data)	$R_{1}=0.1144, w R_{2}=0.2201$
Largest diff. peak and hole	1.146 and $-0.588 \mathrm{e} \AA^{.3}$

Table 2. The selected bond distances (A) and angles (${ }^{\circ}$) for macrocyle, 8b, $\left[\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{6}\right]$.

$\mathrm{S}(1)-\mathrm{C}(2)$	$1.735(4)$	$\mathrm{S}(1)-\mathrm{C}(47)$	$1.808(5)$
$\mathrm{S}(6)-\mathrm{C}(2)$	$1.734(4)$	$\mathrm{S}(6)-\mathrm{C}(5)$	$1.720(4)$
$\mathrm{N}(3)-\mathrm{N}(4)$	$1.383(5)$	$\mathrm{N}(4)-\mathrm{C}(5)$	$1.279(5)$
$\mathrm{C}(8)-\mathrm{O}(9)$	$1.221(5)$	$\mathrm{S}(30)-\mathrm{C}(29)$	$1.760(8)$
$\mathrm{S}(30)-\mathrm{C}(31)$	$1.774(7)$		
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(47)$	$99.9(2)$	$\mathrm{C}(2)-\mathrm{S}(6)-\mathrm{C}(5)$	$85.8(2)$
$\mathrm{N}(4)-\mathrm{C}(5)-\mathrm{S}(6)$	$115.5(3)$	$\mathrm{N}(3)-\mathrm{N}(4)-\mathrm{C}(5)$	$112.8(3)$
$\mathrm{C}(29)-\mathrm{S}(30)-\mathrm{C}(31)$	$103.4(3)$		

Figure 1. ORTEP diagram of macrocycle, 8b, $\left[\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{6}\right]$, showing the atom numbering scheme.
the NH_{2} at 13.64 and 3.84 ppm in the ${ }^{1} \mathrm{H}$ spectrum. and at 160.0 and 36.6 ppm in the ${ }^{13} \mathrm{C}$ NMR spectrum. The IR spectrum also showed the carbonyl group of the amide at $1653 \mathrm{~cm}^{-1}$. FAB-HRMS clearly supported stnicture ($8 \mathbf{b b}$) (761.1414). Moreover. the structure of the macrocycle ($\mathbf{8 b}$) was verified using X-ray crystallography. The crystallographic data and structure refinement parameters for $\mathbf{8 b}\left[\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{6}\right]$ are summarized in Table 1. The selected bond distances and angels are summarized in Table 2. An ORTEP view including the atomic numbering scheme is depicted in Figure 1.

Experimental Section

The synthesis of 5-amino-3H-1,3.4-thiadiazolin-2-one (1), ${ }^{9}$ 5-(5-amino-2,3-dihydro-2-oxo-1,3,4-thiadiazol-3-yl)-3-oxopentyl methanesulfonate (3a). ${ }^{16}$ a, α^{\prime}-bis-[5-(5-amino-2,3-di-hydro-2-oxo-1,3.4-thiadiazol-3-yl)-3-oxopentylthiol-m-xylene $(+\mathbf{a}){ }^{16}$ tri(etlyy leneglycol)dimethanesulfonate. ${ }^{17}$ and 1,3 -benzenedimethanethiol ${ }^{18}$ were followed the previous procedures.

1-(5-Amino-2,3-dihydro-2-oxo-1,3,4-thiadiazol-3-yl)-3,6-dioxactyl-8-methanesulfonate (3b). The synthesis of 3 b followed the same procedure of the preparation of 3 a Yield 24.2%. Oil. $\mathrm{R}_{\mathrm{f}}: 0.18\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=15: \mathrm{I}\right)$. IR $\left(\mathrm{cm}^{-1}\right): 3320\left(\mathrm{NH}_{2}\right) .1613$ $\left.(\mathrm{C}=\mathrm{O}), 1611(\mathrm{NH}), 1348.1178(\mathrm{~S}(=\mathrm{O}))_{2}\right) .1131(\mathrm{C}-\mathrm{N}) .{ }^{1} \mathrm{H} N M R$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}-d_{6}, \hat{o}\right): 4.70\left(2 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{2}\right), 4.37\left(2 \mathrm{H}, \mathrm{t} . \mathrm{CH}_{2} \mathrm{~N}\right.$. $J=5.2 \mathrm{~Hz}), 3.90\left(2 \mathrm{H}, \mathrm{t} . \mathrm{CH}_{2} \mathrm{OMs} . J=5.6 \mathrm{~Hz}\right) .3 .75(4 \mathrm{H} . \mathrm{m}$. $\left.\left.\mathrm{NCH}_{2}\left(\mathrm{CH}_{2} \mathrm{O}\right)_{2}\right), 3.64\left(4 \mathrm{H} . \mathrm{m}_{\mathrm{M}} \mathrm{MsOCH}_{2}\left(\mathrm{CH}_{2} \mathrm{O}\right)\right)_{2}\right) .3 .09(3 \mathrm{H} . \mathrm{s}$. $\left.\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz} . \mathrm{CDCl}_{3}-d_{6} . \hat{\delta}\right): 167.5(\mathrm{C}=\mathrm{O}), 150.6$ $(\mathrm{C}=\mathrm{N}), 70.5 .70 .2 .69 .4,68.9 .68 .0\left(5 \mathrm{OCH}_{2}\right), 46.0\left(\mathrm{NCH}_{2}\right) .37 .7$ $\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{1} ; \mathrm{N}_{3} \mathrm{O}_{6} \mathrm{~S}_{2}: \mathrm{C} 33.02: \mathrm{H} 5.23: \mathrm{S} 19.59$.

Found: C 33.04; H 5.24; S 19.58.
α, α^{\prime}-Bis-[8-(5-amino-2,3-dihydro-2-oxo-1,3,4-thiadiazol-3-yl)-3,6-dioxaoctylthiol-m-xylene (4b). The synthesis of 4b followed the same procedure of the preparation of $t a$. Yield 65%. Oil. Rf: 0.55 (n-hexane : ethyl acetate : $\mathrm{EtOH}=5: 3: 2$). $\operatorname{R}\left(\mathrm{cm}^{-1}\right): 3310\left(\mathrm{NH}_{2}\right), 1672(\mathrm{C}=\mathrm{O}), 1610(\mathrm{NH}) .{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{2}$-d $\mathrm{d}_{6 .}$) $): 7.24-7.15\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{4}\right) .5 .24(4 \mathrm{H} . \mathrm{br}$, $\left.2 \mathrm{NH}_{2}\right) .3 .86\left(4 \mathrm{H} . \mathrm{t}, 2 \mathrm{CH}_{2} \mathrm{~N}, J=5.2 \mathrm{~Hz}\right) .3 .71-3.68(8 \mathrm{H}, \mathrm{m}$, $\left.2 \mathrm{OCH}_{2}+2 \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.57-3.54\left(12 \mathrm{H} . \mathrm{m}, 3\left(\mathrm{CH}_{2} \mathrm{O}\right)_{2}\right), 2.58$ $\left(4 \mathrm{H} . \mathrm{t} .2 \mathrm{CH}_{2} \mathrm{~S} . J=6.4 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR $\left(400 \mathrm{MHz} . \mathrm{CDCl}_{3}-d d_{6} . \hat{\delta}\right)$: $167.4(\mathrm{C}=\mathrm{O}) .150 .9(\mathrm{C}=\mathrm{N}), 138.5 .129 .4,128.6 .127 .6\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$, $70.7,70.23 .70 .15,68.2\left(4 \mathrm{OCH}_{2}\right) .46 .1\left(\mathrm{NCH}_{2}\right) .36 .5\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.$ $\left.\mathrm{CH}_{2} \mathrm{~S}\right) .30 .8\left(\mathrm{SCH}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{4}: \mathrm{C}+5.55$; H 5.73: S 20.27. Found: C 45.54: H 5.72: S 20.28.
$\mathbf{9 , 1 3 , 1 9 , 2 3 , 3 6 , 3 7 - H e x a a z a - 6 , 1 6 - d i o x a - 3 , 1 1 , 2 1 , 2 9 - t e t r a - ~}$ thiotetracyclo-[29,3,1,1, $\left.{ }^{9,12} 1^{20,23}\right]$-heptatriaconta-1(35),12(36), $\mathbf{2 0}(\mathbf{3 7}), \mathbf{3 1}$ (32), 33(34)-pentaene-10,14,18,22,-tetraone (5a). To a solution of $3 \mathrm{a}(3.5 \mathrm{~g}, 6.4 \mathrm{nmol})$ in methy lene chloride (300 mL), pyridine ($1.0 \mathrm{~mL}, 12.9 \mathrm{mmol}$) and cesium chloride ($1.1 \mathrm{~g}, 6.5 \mathrm{mmol}$) were added. Solution of glutaryl chloride (1.7 g .9 .8 mmole) in methylene chloride (250 mL) was added for $72 \mathrm{~h} u$ using syringe pump. After addition of glutaryl chloride solution. the reaction misture was stirred for additional $2+\mathrm{h}$. The end point of reaction was checked by TLC. The salt was filtered off and the solution was washed with saturated NaCl solution and dried with MgSO_{4}. The solvent was distilled off to give oily product. First precipitation induced by addition of acetone (5 mL). And then methylene chloride was added to afford crude precipitate product. The crude product was recrystallized from $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ to afford pure product (0.3 g . 7%) mp: 218-220 ${ }^{\circ} \mathrm{C} \cdot \mathrm{R}_{\mathrm{f}}: 0.33\left(\mathrm{CHCl}_{3}: \mathrm{MeOH}=9: 1\right) . \mathbb{R}(\mathrm{KBr}$. $\left.\mathrm{cm}^{-1}\right): 343+(\mathrm{C}=\mathrm{ONH}), 1671(\mathrm{C}=\mathrm{O}) .1628(\mathrm{C}=\mathrm{ONH}){ }^{1} \mathrm{H} N M \mathrm{R}$ (DMSO- $d_{6}, 400 \mathrm{MHz}, \delta$): $11.94(2 \mathrm{H} . \mathrm{br}, 2 \mathrm{NH}$). $7.20-7.04$ (4 H . $\left.\mathrm{m} . \mathrm{C}_{6} \mathrm{H}_{4}\right) .3 .90\left(4 \mathrm{H}, \mathrm{t} 2 \mathrm{CH}_{2} \mathrm{~N}, J=5.2 \mathrm{~Hz}\right) .367\left(8 \mathrm{H} . \mathrm{m} .2 \mathrm{CH}_{2} \mathrm{O}+\right.$ $\left.2 \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) .3 .54\left(4 \mathrm{H} . \mathrm{t} . \mathrm{C}=\mathrm{OCH}_{3}\right), \quad 2.49\left(4 \mathrm{H}, \mathrm{t}, 2 \mathrm{CH}_{2} \mathrm{O}, J=6.0\right.$ Hz) $.2 .34\left(4 \mathrm{H} . \mathrm{t} .2 \mathrm{CH}_{2} \mathrm{~S} . ~ J=6.4 \mathrm{~Hz}\right) .1 .82\left(2 \mathrm{H} . \mathrm{t} . \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ $\mathrm{CH}_{2}, J=6.0 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz} . \delta$): 171.2 $(\mathrm{C}=\mathrm{O}) .166 .7\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 1+2.4(\mathrm{C}=\mathrm{N})$. 138.6, 129.1, 127.8. 127.1 $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) .70 .3 .45 .7\left(2 \mathrm{OCH}_{2}\right), 45.7\left(\mathrm{CH}_{2}\right)$. $35.4\left(\mathrm{NCH}_{2}\right), 33.6$ $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 30.1\left(\mathrm{SCH}_{2}\right) .19 .8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. FABHRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{4} 641.1344$, found 641.1340 .

12,16,22,26,42,43-Hexaaza-6,9,29,32-tetraoxa-3,14,24,35-tetrathiotetracyclo-[35,3,1,1, $\left.{ }^{12.15} 1^{23,26}\right]$-titetraconta-1(41),15 $(42), 23(+3), 37(38), 39(40)$-pentaene-13,17,21,25,-tetraone ($\mathbf{5 b}$). The synthesis of $\mathbf{5 b}$ followed the same procedure of the preparation of 4 a Yield $5 \% \mathrm{mp}: 228-230^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}: 0.36\left(\mathrm{CHCl}_{3}\right.$: $\mathrm{MeOH}=9: 1) \cdot \mathrm{IR}\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right): 3206(\mathrm{C}=\mathrm{ONH}), 1653(\mathrm{C}=\mathrm{O})$. $1576(\mathrm{C}=\mathrm{ONH}) .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6 .} .400 \mathrm{MHz}, \delta\right): 11.88$ ($2 \mathrm{H} . \operatorname{br} .2 \mathrm{NH}$). $7.18-7.07\left(4 \mathrm{H} . \mathrm{m}_{1} \mathrm{C}_{6} \mathrm{H}_{4}\right), 4.03\left(4 \mathrm{H} . \mathrm{t} .2 \mathrm{CH}_{2} \mathrm{~N}\right.$, $J=5.2 \mathrm{~Hz}) .3 .84\left(4 \mathrm{H} . \mathrm{t} . \mathrm{C}=\mathrm{OCH}_{2}\right), 3.76-3.70\left(8 \mathrm{H} . \mathrm{m} .2 \mathrm{CH}_{2} \mathrm{O}\right.$ $\left.+2 \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) \cdot 3.40\left(12 \mathrm{H}, \mathrm{m} .6 \mathrm{CH}_{2} \mathrm{O}\right) \cdot 2.3 \mathrm{I}\left(4 \mathrm{H} . \mathrm{t} .2 \mathrm{CH}_{2} \mathrm{~S} . J=\right.$ 7.2 Hz). $1.76\left(2 \mathrm{H}\right.$. q. $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} . J=6.4 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}$ (DMSO-d $\left.\epsilon_{6} 100 \mathrm{MHz}, \delta\right): 171.2(\mathrm{C}=\mathrm{O}) .166 .7\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right) .1+2.4$ $(\mathrm{C}=\mathrm{N}), 138.6,129.2 .128 .1 .127 .3\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) .70 .1,69.6,69.3$, $67.0\left(4 \mathrm{OCH}_{2}\right) .45 .6\left(\mathrm{C}=\mathrm{OCH}_{2}\right) .35 .3\left(\mathrm{NCH}_{2}\right) .33 .7\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}\right)$. $30.1\left(\mathrm{SCH}_{2}\right), 19.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. FABHRMS calcd. for $\overline{\mathrm{C}}_{29} \mathrm{H}_{41}$ $\mathrm{N}_{6} \mathrm{O}_{8} \mathrm{~S}_{4} 729.1869$. found 729.1870.

The synthesis of 5 -amino- 3 H -1.3.4-thiadiazolin-2-thione
(2). ${ }^{10} \alpha, \alpha^{\circ}$-bis(5-chloro-3-oxapentylthio-m-xylene ($6 a$) ${ }^{15} \alpha, \alpha^{\circ}$ -$\operatorname{bis}\left(8\right.$-chloro-3.5-dioxaoctylthio)-m-xylene (6 b). ${ }^{15} \alpha . \alpha^{-}$-bis [5-(5-amino-I.3.+-thiadiazol-2-yl)thio-3-oxapentylthio)-m-xylene (7a). ${ }^{15}$ acco-bis [8-(5-amino-1,3,4-thiadiazol-2-yl)thio-3,5-dioxa-octylthio]-m-sylene (7 b) ${ }^{15}$ were followed the previous procedures.

11,12,14,20,22,23-Hexaaza-6,28-dioxa-3,9,25,31,38,39-hexathiotetracyclo-[31,3,1,1, $\left.{ }^{10,13} 1^{21,24}\right]$-nonatriaconta-1(37), $10(11), 12(13), 21(22), 23(24), 33(34), 35(36)$-heptaene-15,19dione (8a). To a solution of $7 \mathrm{a}(0.15 \mathrm{~g}, 0.26 \mathrm{mmol})$ in methylene chloride (50 mL). pyridine (5 mL) and cesium chloride (0.2 g .1 .2 mmol) were added. Solution of glutaryl chloride (0.07 g .0 .39 mmole) in methylene chloride (50 mL) was added for 12 h using syringe pump. After addition of glutaryl chloride solution the reaction mixture was stirred for additional 40 h . The end point of reaction was checked by TLC. The salt was filtered off and the solution was washed with 1 N HCl and saturated NaCl solution and dried with MgSO_{4}. The solvent was distilled off to give oily product. The residue was column chromatographed using n-hexane : ethyl acetate : ethanol ($5: 3: 1$) as eluent affording white solid product ($52.4 \mathrm{mg}, 30 \%$). mp: $157-159{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}} .0 .45$ (n-hexane ethyl acetate : ethanol $=5: 3: \mathrm{I}), \mathbb{R}\left(\mathrm{KBr}\right.$ pellet. $\left.\mathrm{cm}^{-1}\right): 3155$ (NH). $1699(\mathrm{C}=\mathrm{O}) .1560(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-$ $\left.d_{6}\right): \delta 12.52(2 \mathrm{H}$. br .2 NH$), 7.23-7.12\left(4 \mathrm{H}, \mathrm{m} . \mathrm{C}_{6} \mathrm{H}_{4}\right) .3 .71(4 \mathrm{H}$. s, $\left.2 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SCH}_{2}\right), 3.63\left(4 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz} .2 \mathrm{CH}_{2} \mathrm{O}\right), 3.49(4 \mathrm{H}, \mathrm{t}$, $\left.J=6.4 \mathrm{~Hz} .2 \mathrm{OCH}_{2}\right), 3.33-3.30\left(8 \mathrm{H}, \mathrm{m}, 2 \mathrm{CH}_{2} \mathrm{~S}, 2 \mathrm{COCH}_{2}\right)$. $2.49\left(4 \mathrm{H}, \mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SCH}_{3}\right) .1 .99(2 \mathrm{H}$. quintet. $J=$ $\left.6.4 \mathrm{~Hz} . \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): io 170.9 (S-C=S). $158.8(\mathrm{C}=\mathrm{O})$. $158.3(\mathrm{~N}-\mathrm{C}=\mathrm{N})$) 138.7. 129.3. 128.4. $127.3\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 69.9 .68 .8\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right) .35 .3\left(\mathrm{O}=\mathrm{C}_{-} \mathrm{CH}_{2}\right)$. $34.0\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{~S}\right), 33.6\left(\mathrm{CH}_{2} \mathrm{~S}\right) .29 .9\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SCH}_{2}\right), \overline{20.00}$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. FABHRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{4} \overline{\mathrm{~S}_{6}} 673.0888$. found 673.0883 .

14,15,17,23,25,26-Нехаада-6,9,31,3+-tetraoxa-3,12,28, $37,+4,45-h e x a t h i o t e t r a c y c l o-\left[37,3,1,1^{13,16}, 1^{2+, 27}\right]$-pentatetra-conta-1(43),13(14),15(16),24(25),26(27),39(40),41(42)-hepta-ene-18,22-dione ($\mathbf{8 b}$). The sy nthesis of $\mathbf{4 b}$ followed the same procedure of the preparation of ta. The product residue was column chromatographed using n-hexane: THF ($1: 1.5$) as eluent affording white solid product (12.9%). It also purified by recystalized with THF. mp: $167.2^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}: 0.27$ (n-hexane : $\mathrm{THF}=1: 1.5)$. $\mathbb{R}\left(\mathrm{KBr}\right.$ pellet, $\left.\mathrm{cm}^{-1}\right): 3206(\mathrm{NH}), 1653(\mathrm{C}=\mathrm{O})$. $1576(\mathrm{C}=\mathrm{N})$. ${ }^{1} \mathrm{H}$ NMR (400 MHz DMSO- d_{6}): $\hat{o} 13.64$ (2 H . bs. 2 NH). $7.32-7.23\left(4 \mathrm{H} . \mathrm{m}_{1} \mathrm{C}_{6} \mathrm{H}_{4}\right), 3.84(4 \mathrm{H} . \mathrm{t}, J=6.42 \mathrm{~Hz}$, $\left.2 \mathrm{CH}_{2} \mathrm{CO}\right), 3.78\left(4 \mathrm{H} . \mathrm{s}, 2 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-\mathrm{S}\right) .3 .67(4 \mathrm{H}, \mathrm{t}, J=3.67 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{O}$). $3.6+3.59\left(8 \mathrm{H} . \mathrm{m} .2 \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.42(4 \mathrm{H} . \mathrm{t} . J=$ $\left.3.416 \mathrm{~Hz} . \mathrm{CH}_{2} \mathrm{O}\right) .2 .84\left(4 \mathrm{H}, \mathrm{t} . J=5.81 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) .2 .61$ ($+\mathrm{H} . \mathrm{t}, 2 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{SCH}_{2}$) $\quad 2.28\left(2 \mathrm{H} . \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 161.1(\mathrm{~S}-\mathrm{C}=\mathrm{N}), \overline{160.0}(\mathrm{C}=\mathrm{O})$, $160.7(\mathrm{~N}-\mathrm{C}=\mathrm{N}) .138 .9 .129 .8$. 129.0. $127.8\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 712,70.7$. $70.4 .69 .6\left(\mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 36.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) .35 .8\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{~S}\right)$. $34.0\left(\mathrm{CH}_{2} \mathrm{~S}\right), 30.5\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \overline{\mathrm{~S}}_{2} \mathrm{CH}_{2}\right),-\frac{1}{21} .7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6} .100 \mathrm{MHz} . \dot{\delta}$): FABHRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{39}$ $\mathrm{N}_{6} \mathrm{O}-\mathrm{S}_{6} 761.1412$, found 761.1414 .

X-ray data of macrocycle ($\mathbf{8 b}$). X-my intensity data were collected on a Bnuker SMART APEX-II CCD diffractometer using graphite monochromated Mo K α radiation ($\downarrow=0.71073$ A). Structure was solved by applying the direct method using a SHELXS-97 and refined by a full-matrix least-squares calculation on F^{2} using SHELXL-97. ${ }^{19}$ All non-hydrogen atoms were refined anisotropically. The amine H atoms. H 7 and H 15 , were located in a difference map and refined freely. The other hydrogen atoms were placed in ideal positions and were riding on their respective carbon atoms ($B_{18 \mathrm{c}}=1.2 B_{\text {eq }}$).

Crystallogrplic data for the structure reported here have been deposited with the Cambridge Crystallographic Data Center (Deposition No. CCDC-720138). The data can be obtained free of charge wia www.ccdc.cam.ac.uk/deposit (or from the CCDC. 12 Union Road. Cambridge CB2 IEZ. UK: Fax: +44-01223 336033: E-mail: deposit ácodc.cam ac.uk).

Acknowledgments. This work was supported by a Grant from Chungnam National University

References

1. Thomas, C. M.: Ward, T. R. Appl. Organometal. Chem. 2005, 19,35 and references cited therein.
2. Creus, M.: Ward, T. R. Oig. Biomol. Chem. 2007, 5, 1835
3. Zürcher, M.; Diederich, F. J. Org. Chem. 2008, 73, 4345.
4. Carey, T. R.; Ma, S. K.; Pfister, T. D.; Gamer, D. K.; Kim, H. K.; Abramite, I. A.; Wang, Z.: Guo, Z.: Lu, Y. 2004, 126, 10812.
5. Pordea, A.; Creus, M.; Panek, T.; Duboc, C.; Mathis, D.; Novic, M.; Ward T. R. J.Am. Chem. Soc. 2008, 130, 8085 and references cited therein.
6. Collot, T.; Gradinaru, J.; Hmbert, N.; Skander, M.; Zocchi, A;; Ward, T. R. J. Am. Chem. Soc. 2003, 125, 9030.
7. Skander, M.: Humbert, N.; Collot, I.; Gradinaru, T.; Klain, G.; loosli, A.; Sauser, T.; Zocchi, A.; Gilardoni, F.; Ward, T. R. J. Am. Chem. Soc. 2004, 126, 14411 and references cited therein
8. Pienon, J.: Malan, C.; Creus, M.; Gradinaru, I.; Hafner, I.: Ivanova, A.; Sardo, A.; Ward, T. R. Angew. Chem. Int. Ed. 2008, 47,701 and references cited therein
9. Cho, N. S.; Cho, J. J.: Ra, D. Y.; Moon, T. S.; Kang, S. K.; Song, J. S. Bull. Korem Chem. Soc. 1996, 17, 1170.
10. Cho, N. S.; Kim, K. V.; Parkanyi, C. J. Heterocycl. Chem. 1993, 30, 397.
11. Cameron, B. R.; Loeb, S. J.; Yap. G. P. A. horg. Chem. 1997, 36, 5498.
12. Murphy, S. L.; Loeb, S. J.; Shimizu, G. K. H. Tetrahedron 1998 , 54, 15137.
13. Loeb, S. T.; Shimizu, G. K. H.; Wisner, I. A. Organometallics $1998,17,2324$.
14. Buter, J: Kellogg, R. M. Org. Swhh. 1987, 65, 150
15. Cho, N. S.: Park, M. S.: Kim, Y. H.: Yu, Y.-A.; Kwon, H. T.: Kim, Y.-T. Heterocvcles 2006, 68, 811.
16. Cho, N. S.; Lee, C. H.: Kim, Y--I: Choi, J. S.; Kang, S. K. Heterocycles 2004, 63, 2827
17. Ingham, A. M; Xu, C; Whitcombe, T. W.; Xu, C; Bridson, T. N.; McAuley, A. Can. J. Chem. 2002, 80, 155.
18. Sato, T;; Nishiyama, K.; Morita, A.; Likata, Y. Bufl. Chem. Soc. Jap. 1985, 58, 2366.
19. Sheldrick, G. M. Acta Cnust. 2008, A6t, 112.
