Synthesis of Heteromacrocycles as Ligands of a Palladium-Artificial Enzyme and Crystal Structure

Nam Sook Cho," Chun Ho Lee, Young Hoon Kim, Sung Kwon Kang, and You-Soon Lee

Department of Chemistry, Chungnam National University, Daejeon 305-764, Korea. 'E-mail: nsmcho@cnu.ac.kr Received March 11, 2009, Accepted May 14, 2009

Key Words: Metalloenzyme. Molecular recognition, Macrocycles, 5-Amino-3*H*-1,3.4-thiadiazolin-2-one, 5-Amino-3*H*-1,3.4-thiadiazolin-2-thione

Molecular recognition is a general principle in nature, and the design of artificial receptors (enzymes) for specific target molecules based on molecular recognition is an important theme in bioorganic chemistry. Enzymes are often surrounded by a hydrophobic sheath of amino acids that shields them from undesirable hydrolysis and polymerization reactions, and facilitates their normal functions. The mimicking of metalloenzyme active sites are of particular interest.^{1/3} Artificial metalloenzymes possessing molecular-recognition properties have attracted attention since the 1980s. Some compounds have been utilized for enantioselective sulfoxidation.^{4,5} hydrogenation.^{6,7} or asymmetric allylic alkylation reactions.⁸

In the present work, we have prepared ligands of a palladium-artificial enzyme as amino acid substitutes. 5-Amino-3H-1,3,4-thiadiazolin-2-one (1)⁹ and 5-amino-3H-1,3,4-thiadiazolin-2-thione (2)¹⁰ -derived mimics of a metalloenzyme active sites were designed. To provide potential chelation sites to allow the formation of palladium ion complexes. 1,3-benzenedimethanethiol was introduced.¹¹⁻¹³ In order to form a hydrogen bond and control the size of the macrocycle cavity, an ether linkage was inserted and compounds 1 and 2 were acylated with acyl halide.

Results and Discussion

The synthesis of ligands containing two units of 5-amino-3*H*-1.3,4-thiadiazolin-2-one (1) were accomplished according to Scheme 1. The difference between **3a** and **3b** is the length of the chain, which influences the size of the macrocycle cavity. According to the regiospecific *N*-alkylation of **1**, the reaction of **1** with tri(ethyleneglycol) dimethanesulfonate in the presence of NaOC₂H₅ in ethanol gave the *N*-alkylated product (**3b**). The formation of **3b** was confirmed by ¹H and ¹³C NMR spectra. The NH signal of compound (1) was replaced by that of NCH₂ at δ 3.90 and 46.0 in the ¹H and ¹³C NMR spectra, respectively. To introduce 1.3-bezenedimethanthiol, the compound was S-alkylated with **3b** under basic conditions (NaOCH (CH₃)₂- (CH₃)₂CHOH. The formation of **4b** was also confirmed by ¹H and ¹³C NMR spectra. The SH signal of 1,3-bezene-

Scheme 1. Synthesis of heteromacrocycles containing two units of 5-amino-3H-1,3,4-thiadiazolin-2-one (1).

Scheme 2. Synthesis of heteromacrocycles containing two units of 5-amino-3H-1,3,4-thiadiazolin-2-thione (2).

dimethanthiol was replaced by a SCH₂ at δ 2.61 and 30.8 in the ¹H and ¹³C NMR spectra, respectively, 1.3-Benzenedimethanethiol supplies the chelation sites to form complexes with palladium ions.¹¹⁻¹³

To obtain the target macrocycle containing two 5-amino-3*H*-1,3,4-thiadiazoline-2-ones and one 1,3-benzenedimethanethiol from **4b**, we attempted Cs⁺-mediated cyclization.¹⁴ which involves *N*.*N*'-diacylation of **4b** at the NH₂ group of the 1.3,4-thiadiazole rings using diglycolyl chloride with a highdilution technique. Glutaryl chloride was added to a CH₂Cl₂ solution of **4b** over a 72 h period. The structure of the macrocycle was established using ¹H and ¹³C NMR, IR, and FAB-HRMS spectra. The successful macrocyclization of **4b** to **5b** was supported by evidence of *N*-acylation, which indicated that a NHCOCH₂ group replaced the NH₂ functional group at δ 11.88 and 3.84 in the ¹H NMR spectrum, and at δ 166.7 and 45.6 ppm in the ¹³C NMR spectrum. The IR spectrum also displays the carbonyl group of the amide at 1653 cm⁻¹. FAB-HRMS spectra clearly supported structure **5b** (729.1869).

The synthesis of ligands containing two 5-amino-3*H*-1,3,4thiadiazolin-2-thione (2) units was accomplished according to Scheme 2. The difference between 6a and 6b is the length of the chain. As $\alpha.\alpha'$ -*m*-xylenedithiol is a palladation chelation site, ¹¹⁻¹³ an $\alpha.\alpha'$ -*m*-xylenedithiol moiety was introduced to the macrocyclic compounds to chelate palladium.

According to the regiospecific S-alkylation, compound 2 with the appropriate chloride (6a or 6b) in the presence of NaOEt in ethanol gave an (S)-alkylated dimer (7a or 7b), as shown in the previous method.¹⁵ Again, the difference between 7a and 7b is the length of the chain, which influences the size of the macrocycle cavity. To obtain target macrocycles containing two 2-amino-5-alkylthio-1,3,4-thiadiazole and one

1.3-benzenedimethanethiol from **2**, we attempted Cs⁻-mediated¹¹⁻¹³ cyclization involving *N.N'*-diacylation of **7b** at the NH₂ of the 1.3.4-thiadiazole rings using glutaryl chloride with a high-dilution technique to synthesize ligands of **8a** and **8b**. Glutaryl chloride was added to a CH₂Cl₂ solution of **7b** over a 20 h period. The structure of the macrocycle was established using ¹H and ¹³C NMR. IR. and FAB-HRMS. The successful macrocyclization of **7b** to **8b** was supported by evidence of *N*-acylation, which indicated that an NHCOCH₂ group replaced

Table 1. Crystal data and structure refinement for macrocycle, 8b, $[C_{29}H_{40}N_6O_6S_6].$

Chemical formula	$C_{29}H_{40}N_6O_6S_6$
Formula weight	761.03
Temperature	295(2) K
Wavelength	0.71073 Å
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	$a = 8.9202(11)$ Å, $\alpha = 76.545(8)^{\circ}$
	$b = 9.9488(12)\text{Å}, \beta = 84.623(8)^{\circ}$
	$c = 21.220(2)\text{\AA}, \gamma = 83.502(7)^{\circ}$
Volume	1815.3(4) Å ³
Z, Calculated density	2, 1.392 Mg/m ³
F(000)	800
Crystal size	$0.50 \times 0.32 \times 0.23$ mm
Theta range for data collection	1.98 to 26.00 °
Reflections collected / unique	11350/7088 [R _{int} = 0.0227]
Goodness-of-fit on F^2	1.034
Final R indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0675, wR_2 = 0.1864$
R indices (all data)	$R_1 = 0.1144, wR_2 = 0.2201$
Largest diff. peak and hole	1.146 and -0.588 e Å ⁻³

Notes

Table 2. The selected bond distances (Å) and angles (°) for macrocyle, 8b, $[C_{29}H_{40}N_6 O_6 S_6]$.

S(1)-C(2)	1.735(4)	S(1)-C(47)	1.808(5)
S(6)-C(2)	1.734(4)	S(6)-C(5)	1.720(4)
N(3)-N(4)	1.383(5)	N(4)-C(5)	1.279(5)
C(8)-O(9)	1.221(5)	S(30)-C(29)	1.760(8)
S(30)-C(31)	1.774(7)		
C(2)-S(1)-C(47)	99.9(2)	C(2)-S(6)-C(5)	85.8(2)
N(4)-C(5)-S(6)	115.5(3)	N(3)-N(4)-C(5)	112.8(3)
C(29)-S(30)-C(31)	103.4(3)		

 $\begin{array}{c} \text{C12} \\ \text{C13} \\ \text{C10} \\ \text{C10$

Figure 1. ORTEP diagram of macrocycle, **8b**, $[C_{29}H_{40}N_6 O_6 S_6]$, showing the atom numbering scheme.

the NH₂ at 13.64 and 3.84 ppm in the ¹H spectrum, and at 160.0 and 36.6 ppm in the ¹³C NMR spectrum. The IR spectrum also showed the carbonyl group of the amide at 1653 cm⁻¹. FAB-HRMS clearly supported structure (**8b**) (761.1414). Moreover, the structure of the macrocycle (**8b**) was verified using X-ray crystallography. The crystallographic data and structure refinement parameters for **8b** [C₂₉H₄₀N₆ O₆ S₆] are summarized in Table 1. The selected bond distances and angels are summarized in Table 2. An ORTEP view including the atomic numbering scheme is depicted in Figure 1.

Experimental Section

The synthesis of 5-amino-3*H*-1,3.4-thiadiazolin-2-one (1),⁹ 5-(5-amino-2,3-dihydro-2-oxo-1,3,4-thiadiazol-3-yl)-3-oxopentyl methanesulfonate (3a).¹⁶ α, α' -bis-[5-(5-amino-2,3-dihydro-2-oxo-1,3,4-thiadiazol-3-yl)-3-oxopentylthio]-*m*-xylene (4a).¹⁶ tri(ethyleneglycol)dimethanesulfonate.¹⁷ and 1,3-benzenedimethanethiol¹⁸ were followed the previous procedures.

1-(5-Amino-2,3-dihydro-2-oxo-1,3,4-thiadiazol-3-yl)-3,6dioxaoctyl-8-methanesulfonate (3b). The synthesis of 3b followed the same procedure of the preparation of 3a Yield 24.2%. Oil. $R_f: 0.18$ (CHCl₃: MeOH = 15 : 1). IR (cm⁻¹): 3320 (NH₂). 1613 (C=O), 1611 (NH), 1348. 1178 (S(=O)₂). 1131 (C-N). ¹H NMR (400 MHz, CDCl₃- d_6 , δ): 4.70 (2H, br, NH₂), 4.37 (2H, t, CH₂N, J = 5.2 Hz), 3.90 (2H, t, CH₂OMs, J = 5.6 Hz), 3.75 (4H, m, NCH₂(CH₂O)₂), 3.64 (4H, m, MsOCH₂(CH₂O)₂), 3.09 (3H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃- d_6 , δ): 167.5 (C=O), 150.6 (C=N), 70.5, 70.2, 69.4, 68.9, 68.0 (5OCH₂), 46.0 (NCH₂), 37.7 (CH₃). Anal. Calcd for C₉H₁₇N₃O₆S₂: C 33.02; H 5.23; S 19.59.

Found: C 33.04; H 5.24; S 19.58.

a,*a* -**Bis-[8-(5-amino-2,3-dihydro-2-oxo-1,3,4-thiadiazol-3-yl)-3,6-dioxaoctylthio]-***m***-xylene (4b). The synthesis of 4b followed the same procedure of the preparation of 4a. Yield 65%. Oil. R_f: 0.55 (***n***-hexane : ethyl acetate : EtOH = 5 : 3 : 2). IR (cm⁻¹): 3310 (NH₂), 1672 (C=O), 1610 (NH). ¹H NMR (400 MHz, CDCl₃-***d***₆, \delta): 7.24-7.15 (4H, m, C₆H₄), 5.24 (4H, br, 2NH₂). 3.86 (4H, t, 2CH₂N,** *J* **= 5.2 Hz). 3.71-3.68 (8H, m, 2OCH₂ + 2CH₂C₆H₄), 3.57-3.54 (12H. m, 3 (CH₂O)₂), 2.58 (4H, t, 2CH₂S,** *J* **= 6.4 Hz). ¹³C NMR (400 MHz, CDCl₃-***d***₆, \delta): 167.4 (C=O). 150.9 (C=N), 138.5. 129.4, 128.6. 127.6 (C₆H₄), 70.7, 70.23, 70.15, 68.2 (4OCH₂), 46.1 (NCH₂). 36.5 (C₆H₄ CH₂S). 30.8 (SCH₂). Anal. Calcd for C₂₄H₃₆N₆O₆S₄: C 45.55; H 5.73; S 20.27. Found: C 45.54; H 5.72; S 20.28.**

9,13,19,23,36,37-Hexaaza-6,16-dioxa-3,11,21,29-tetrathiotetracyclo-[29,3,1,1,^{9,12}1^{20,23}]-heptatriaconta-1(35),12(36), 20(37),31(32),33(34)-pentaene-10,14,18,22,-tetraone (5a). To a solution of 3a (3.5 g, 6.4 mmol) in methylene chloride (300 mL), pyridine (1.0 mL, 12.9 mmol) and cesium chloride (1.1 g, 6.5 mmol) were added. Solution of glutaryl chloride (1.7 g. 9.8 mmole) in methylene chloride (250 mL) was added for 72 h using syringe pump. After addition of glutaryl chloride solution, the reaction mixture was stirred for additional 24 h. The end point of reaction was checked by TLC. The salt was filtered off and the solution was washed with saturated NaCl solution and dried with MgSO4. The solvent was distilled off to give oily product. First precipitation induced by addition of acetone (5 mL). And then methylene chloride was added to afford crude precipitate product. The crude product was recrystallized from C_2H_3OH to afford pure product (0.3 g, 7%). mp: 218-220 °C. R_f : 0.33 (CHCl₃ : MeOH = 9 : 1). IR (KBr, cm⁻¹): 3434 (C=ONH), 1671 (C=O). 1628 (C=ONH).¹H NMR (DMSO-*d*₆, 400 MHz, δ): 11.94(2H, br, 2NH). 7.20-7.04 (4H. m, C₆H₄), 3.90 (4H, t, 2CH₂N, J = 5.2 Hz), 3.67 (8H, m, 2CH₂O + $2CH_2C_6H_4$). 3.54 (4H. t. C=OCH₂), 2.49 (4H. t. 2CH₂O, J=6.0 Hz), 2.34 (4H, t, 2CH₂S, J = 6.4 Hz), 1.82 (2H, t, CH₂CH₂ CH₂, J = 6.0 Hz). ¹³C NMR (DMSO- d_6 , 100 MHz. δ): 171.2 (C=O), 166.7 (CH₂C=O), 142.4 (C=N), 138.6, 129.1, 127.8, 127.1 (C₆H₄), 70.3, 45.7 (2OCH₂), 45.7 (CH₂), 35.4 (NCH₂), 33.6 (C6H4CH2), 30.1 (SCH2). 19.8 (CH2CH2CH2). FABHRMS calcd. for C₂₅H₃₃N₆O₆S₄ 641.1344, found 641.1340.

12,16,22,26,42,43-Hexaza-6,9,29,32-tetraoxa-3,14,24,35tetrathiotetracyclo-[35,3,1,1,^{12,15}1^{23,26}]-tritetraconta-1(41),15 (42),23(43),37(38),39(40)-pentaene-13,17,21,25,-tetraone (5b). The synthesis of 5b followed the same procedure of the preparation of 4a. Yield 5%, mp: 228-230 °C. R_f: 0.36 (CHCl₃: MeOH = 9 : 1). IR (KBr. cm⁻¹): 3206 (C=ONH), 1653 (C=O). 1576 (C=ONH). ¹H NMR (DMSO-d₆, 400 MHz, δ): 11.88 (2H. br. 2NH). 7.18-7.07 (4H. m, C₆H₄), 4.03(4H. t. 2CH₂N, J = 5.2 Hz). 3.84 (4H. t. C=OCH₂). 3.76-3.70 (8H. m, 2C<u>H₂O</u> +2CH₂C₆H₄), 3.40 (12H. m, 6CH₂O), 2.31 (4H. t. 2CH₂S, J =7.2 Hz). 1.76 (2H. q. CH₂CH₂CH₂. J = 6.4 Hz). ¹³C NMR (DMSO-d₆, 100 MHz, δ): 171.2 (C=O), 166.7 (CH₂C=O), 142.4 (C=N), 138.6, 129.2. 128.1. 127.3 (C₆H₄). 70.1, 69.6, 69.3, 67.0 (4OCH₂), 45.6 (C=OCH₂). 35.3 (NCH₂), 33.7 (C₆H₄CH₂). 30.1(SCH₂), 19.7 (CH₂CH₂CH₂). FABHRMS calcd. for C₂₉H₄₀ N₆O₈S₄ 729.1869, found 729.1870.

The synthesis of 5-amino-3H-1.3.4-thiadiazolin-2-thione

(2).¹⁰ α, α '-bis(5-chloro-3-oxapentylthio-*m*-xylene (6a).¹⁵ α, α '-bis(8-chloro-3.5-dioxaoctylthio)-*m*-xylene (6b).¹⁵ α, α '-bis [5-(5-amino-1.3.4-thiadiazol-2-yl)thio-3-oxapentylthio)-*m*-xylene (7a).¹⁵ α, α '-bis[8-(5-amino-1,3,4-thiadiazol-2-yl)thio-3,5-dioxaoctylthio]-*m*-xylene (7b)¹⁵ were followed the previous procedures.

11,12,14,20,22,23-Hexaaza-6,28-dioxa-3,9,25,31,38,39-hexathiotetracyclo-[31,3,1,1,^{10,13}1^{21,24}]-nonatriaconta-1(37), 10(11),12(13),21(22),23(24),33(34),35(36)-heptaene-15,19dione (8a). To a solution of 7a (0.15 g, 0.26 mmol) in methylene chloride (50 mL), pyridine (5 mL) and cesium chloride (0.2 g. 1.2 mmol) were added. Solution of glutaryl chloride (0.07 g. 0.39 mmole) in methylene chloride (50 mL) was added for 12 h using syringe pump. After addition of glutaryl chloride solution, the reaction mixture was stirred for additional 40 h. The end point of reaction was checked by TLC. The salt was filtered off and the solution was washed with 1 N HCl and saturated NaCl solution and dried with MgSO₄. The solvent was distilled off to give oily product. The residue was column chromatographed using *n*-hexane : ethyl acetate : ethanol (5:3:1) as eluent affording white solid product (52.4 mg, 30%). mp: 157-159 °C. R_f: 0.45 (n-hexane : ethyl acetate : ethanol = 5 : 3 : 1). IR (KBr pellet, cm^{-1}): 3155 (NH). 1699 (C=O). 1560 (C=N). ¹H NMR (400 MHz, DMSOd₆): δ 12.52 (2H, br, 2NH), 7.23-7.12 (4H, m, C₆H₄), 3.71 (4H, s, $2C_6H_4SCH_2$), 3.63 (4H, t, J = 6.4 Hz, $2CH_2O$), 3.49 (4H, t, J = 6.4 Hz, 2OCH₂), 3.33-3.30 (8H, m, 2CH₂S, 2COCH₂), 2.49 (4H, t, J = 6.4 Hz, $2C_6H_4CH_2SCH_2$), 1.99 (2H, quintet, J =6.4 Hz, CH₂CH₂CH₂).¹³C NMR (100 MHz, DMSO-d₆): δ 170.9 (S-C=S), 158.8 (C=O), 158.3 (N-C=N), 138.7, 129.3, 128.4, 127.3 (C₆H₄), 69.9, 68.8 (CH₂OCH₂), 35.3 (O=C-CH₂), 34.0 (C₆H₄CH₂S), 33.6 (CH₂S), 29.9 (C₆H₄CH₂SCH₂), 20.00 (CH₂CH₂CH₂). FABHRMS calcd for C₂₅H₃₃N₆O₄S₆ 673.0888. found 673.0883.

14,15,17,23,25,26-Hexaaza-6,9,31,34-tetraoxa-3,12,28, 37,44,45-hexathiotetracyclo-[37,3,1,1^{13,16},1^{24,27}]-pentatetraconta-1(43),13(14),15(16),24(25),26(27),39(40),41(42)-heptaene-18,22-dione (8b). The synthesis of 4b followed the same procedure of the preparation of 4a. The product residue was column chromatographed using *n*-hexane: THF (1 : 1.5) as eluent affording white solid product (12.9%). It also purified by recystalized with THF, mp: 167.2 °C, Rf. 0.27 (n-hexane : THF = 1 : 1.5). IR (KBr pellet, cm^{-1}): 3206 (NH), 1653 (C=O). 1576 (C=N). ¹H NMR (400 MHz, DMSO-*d*₆): δ 13.64 (2H, bs. 2NH). 7.32-7.23 (4H, m, C_6H_4), 3.84 (4H, t, J = 6.42 Hz, $2CH_2CO$, 3.78 (4H, s, $2C_6H_4CH_2S$), 3.67 (4H, t, J = 3.67 Hz, CH₂O), 3.64-3.59 (8H, m, 2OCH₂CH₂O), 3.42 (4H, t, J = 3.416 Hz, CH₂O), 2.84 (4H, t, J = 5.81 Hz, CH₂CH₂CH₂), 2.61 (4H, t, 2C₆H₄CH₂SCH₂), 2.28 (2H, m, CH₂CH₂CH₂). ¹³C NMR (100 MHz, DMSO-d₆): 8 161.1 (S-C=N), 160.0 (C=O), 160.7 (N-C=N), 138.9, 129.8, 129.0, 127.8 (C₆H₄), 71.2, 70.7, 70.4, 69.6 (CH2OCH2), 36.6 (CH2CH2CH2), 35.8 (C6H4CH2S), 34.0 (CH₂S), 30.5 (C₆H₄CH₂SCH₂), 21.7 (CH₂CH₂CH₂). ¹³C NMR (DMSO-d₆, 100 MHz, δ): FABHRMS calcd for C₂₈H₃₉ N₆O-S₆ 761.1412, found 761.1414.

X-ray data of macrocycle (8b). X-ray intensity data were collected on a Bruker SMART APEX-II CCD diffractometer using graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å). Structure was solved by applying the direct method using a SHELXS-97 and refined by a full-matrix least-squares calculation on F^2 using SHELXL-97.¹⁹ All non-hydrogen atoms were refined anisotropically. The amine H atoms. H7 and H15, were located in a difference map and refined freely. The other hydrogen atoms were placed in ideal positions and were riding on their respective carbon atoms ($B_{\rm ISO} = 1.2 B_{\rm eq}$).

Crystallogrphic data for the structure reported here have been deposited with the Cambridge Crystallographic Data Center (Deposition No. CCDC-720138). The data can be obtained free of charge *via* www.ccdc.cam.ac.uk/deposit (or from the CCDC. 12 Union Road. Cambridge CB2 1EZ. UK: Fax: +44-01223 336033; E-mail: deposit@ccdc.cam.ac.uk).

Acknowledgments. This work was supported by a Grant from Chungnam National University.

References

- Thomas, C. M.: Ward, T. R. Appl. Organometal. Chem. 2005, 19, 35 and references cited therein.
- 2. Creus, M.; Ward, T. R. Org. Biomol. Chem. 2007, 5, 1835.
- 3. Zürcher, M.; Diederich, F. J. Org. Chem. 2008, 73, 4345.
- Carey, J. R.; Ma, S. K.; Pfister, T. D.; Gamer, D. K.; Kim, H. K.; Abramite, J. A.; Wang, Z.; Guo, Z.; Lu, Y. 2004, 126, 10812.
- Pordea, A.; Creus, M.; Panek, J.; Duboc, C.; Mathis, D.; Novie, M.; Ward, T. R. J. Am. Chem. Soc. 2008, 130, 8085 and references cited therein.
- Collot, J.; Gradinaru, J.; Hmbert, N.; Skander, M.; Zocchi, A.; Ward, T. R. J. Am. Chem. Soc. 2003, 125, 9030.
- Skander, M.: Humbert, N.; Collot, J.; Gradinaru, J.; Klain, G.; loosli, A.; Sauser, J.; Zocchi, A.; Gilardoni, F.; Ward, T. R. J. Am. Chem. Soc. 2004, 126, 14411 and references cited therein.
- Pierron, J.: Malan, C.; Creus, M.; Gradinaru, J.; Hafner, I.; Ivanova, A.; Sardo, A.; Ward, T. R. *Angew. Chem. Int. Ed.* 2008, 47, 701 and references cited therein.
- Cho, N. S.; Cho, J. J.; Ra, D. Y.; Moon, J. S.; Kang, S. K.; Song, J. S. Bull. Korean Chem. Soc. 1996, 17, 1170.
- Cho, N. S.; Kim, K. V.; Parkanyi, C. J. Heterocycl. Chem. 1993, 30, 397.
- Cameron, B. R.; Loeb, S. J.; Yap, G. P. A. Inorg. Chem. 1997, 36, 5498.
- Murphy, S. L.; Loeb, S. J.; Shimizu, G. K. H. Tetrahedron 1998, 54, 15137.
- Loeb, S. J.; Shimizu, G. K. H.; Wisner, J. A. Organometallics 1998, 17, 2324.
- 14. Buter, J.; Kellogg, R. M. Org. Synth. 1987, 65, 150.
- Cho, N. S.; Park, M. S.; Kim, Y. H.; Yu, Y.-A.; Kwon, H. J.; Kim, Y.-J. *Heterocycles* 2006, 68, 811.
- Cho, N. S.; Lee, C. H.; Kim, Y.-J.; Choi, J. S.; Kang, S. K. *Heterocycles* 2004, 63, 2827.
- Ingham, A. M.; Xu, C.; Whitcombe, T. W.; Xu, C.; Bridson, J. N.; McAuley, A. Can. J. Chem. 2002, 80, 155.
- Sato, T.; Nishiyama, K.; Morita, A.; Likata, Y. Bull. Chem. Soc. Jap. 1985, 58, 2366.
- 19. Sheldrick, G. M. Acta Cryst. 2008, A64, 112.