DOI QR코드

DOI QR Code

Effects of Silver Treatment and the Physical and Chemical Properties of Spherical Activated Carbon

  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Kim, Jong-Gyu (Hanil Green Tech Co, Ltd) ;
  • Kim, Hyuk (Hanil Green Tech Co, Ltd) ;
  • Chen, Ming-Liang (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Zhang, Kan (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Meng, Ze-Da (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Zhang, Feng-Jun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Published : 2009.11.27

Abstract

In this study, the effects of silver treatment and activation on the physical and chemical properties of spherical activated carbon (SAC) were studied. The textural properties of SAC were characterized by BET surface area, XRD, SEM, iodine adsorption, strength intensity, pressure drop and antibacterial effects. BET surface areas of SACs decreased with an increase of the amount of PR before and after activation, and the BET surface areas of SACs were found to be about 2-3 times the size of those before activation. The XRD patterns showed their existing state as stable Ag crystals and carbon structure. The Ag particles are seaweedlike and uniform, being approximately 5-10 μm in size deposited on the surface of activated carbon. All of the samples had much more iodine adsorption capability after activation than before activation. The strength values of SACs increased with an increase of the amount of PR, and there was a smaller drop in the strength values of SACs with silver treatment than with non-silver treatment after activation. The Ag-SAC composites showed strong antibacterial activity against Escherichia coli (E. Coli).

Keywords

References

  1. E. L. Eretskii, Y. V. Shulepov, E. V. Eretskaya and T. F. Lobunets, Dopov. Nats. Akad. Nauk Ukr., 3, 142 (1999)
  2. L. Yang and T. Liu, Sci. Technol. Food Indus., 2, 4 (1999)
  3. Y. Sakata, A. Muto, M. Shiomi, C. Marushige, S. Ibaraki and K. Kojima, Jpn. Kokai Tokkyo Koho JP 10297912 A2 (1998)
  4. S. Nomoto, H. Handa and J. Shinkura, Jpn. Kokai Tokkyo Koho JP 11307406 A2 (1999)
  5. J. B.Yang, L. C. Ling, L. Liu, F. Y. Kang, Z. H. Huang and H. Wu, Carbon, 40, 911 (2002) https://doi.org/10.1016/S0008-6223(01)00222-6
  6. F. Salvador, M. J. Sanchez, A. Martin and C. Sanchez-Jimenez, Eurocarbon 2000, 1st World Conference on Carbon, Berlin: German Carbon Group, 2000, p. 669, abstract and programme, post-presentations
  7. C. T. Hsieh and H. Teng, Carbon, 38, 863 (2000) https://doi.org/10.1016/S0008-6223(99)00180-3
  8. I. Martin-Gullon and R. Font, Water Res., 35, 516 (2001) https://doi.org/10.1016/S0043-1354(00)00262-1
  9. Q. Li, V. L. Snoeyink, B. J. Marinas and C. Campos, Water Res., 37, 773 (2003) https://doi.org/10.1016/S0043-1354(02)00390-1
  10. K. Nakagawa, A. Namba, S. R. Mukai, H. Tamon, P. Ariyadejwanich and W. Tanthapanichakoon, Water Res., 38, 1791 (2004) https://doi.org/10.1016/j.watres.2004.01.002
  11. Z. Yue, J. Economy, K. Rajagopalan, G. Bordson, M. Piwoni, L. Ding, V. L. Snoeyink and B. J. Marinas, J. Mater. Chem., 16, 3375 (2006) https://doi.org/10.1039/b606679h
  12. S. Han, K. Sohn and T. Hyeon, Chem. Mater., 12, 3337 (2000) https://doi.org/10.1021/cm000106t
  13. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto and H. Yasuda, Chem. Mater., 8, 454 (1996) https://doi.org/10.1021/cm950381t
  14. D. L. Wilcox, M. Berg, T. Barnet, D. Kellerman and J.K. Cochran, Mater. Res. Soc. Symp. Proc., 372, 3(1995)
  15. I. Amano, H. Kano, H. Takahira, Y. Yamamoto, K. Itok and S. Iwatsuki, Artificial kidney, artificial liver and artificial cell, p. 89, Plenum Press, New York, (1978)
  16. H. Tamai, S. Kojima, M. Ikeuchi, J. Mondori, T. Kanata and H. Yasuda, Kidorui, 30, 244 (1997)
  17. American Society for Testing and Materials, 'Standard test method for determination of iodine number of activated carbon,' Philadelphia, PA: ASTM Committee on Standards, (1986)
  18. Japanese Industrial Standard specifies the testing methods for carbon blocks, JIS R 7212:1995. Japan Carbon Association, (1995)
  19. N. S. Roh, K. H. Kim and D. C. Kim, J. Korean Insti. Chem. Engin., 33, 282 (1995)
  20. E. Berman, Toxic metals and their analysis, p.116, Heyden and Son, London, (1980)
  21. W. C. Oh and W. C. Jang, Carbon, 41, 1737 (2003) https://doi.org/10.1016/S0008-6223(03)00119-2
  22. W. C. Oh, Bull. Korean Chem. Soc., 25, 639 (2004) https://doi.org/10.5012/bkcs.2004.25.5.639
  23. W. C. Oh, A. R. Jung and W. B. Ko, Mater. Sci. Eng. C., 4, 1338 (2009) https://doi.org/10.1016/j.msec.2008.10.034
  24. X. W. Zhang, M. H. Zhou and L. C. Lei, Mater. Chem. Phys., 91(1), 73 (2005) https://doi.org/10.1016/j.matchemphys.2004.10.058
  25. W. Lu and D. L. Chung, Carbon, 35, 427 (1997) https://doi.org/10.1016/S0008-6223(97)89614-5
  26. J. W. Kim, M. H. Sohn, D. S. Kim, S. M. Sohn and Y. S. Kwon, J. Hazard. Mater., 85, 301 (2001) https://doi.org/10.1016/S0304-3894(01)00239-4
  27. S. C. Kim, I. K. Hong, and K. A. Park, J. Ind. Eng. Chem., 3, 218 (1997)