DOI QR코드

DOI QR Code

Effects of Co Doping on NO Gas Sensing Characteristics of ZnO-Carbon Nanotube Composites

산화아연-탄소나노튜브 복합체의 일산화질소 가스 감지 특성에 미치는 코발트 첨가 효과

  • Jung, Hoon-Chul (Department of Materials Science and Engineering, Chungnam National University) ;
  • Ahn, Eun-Seong (Department of Materials Science and Engineering, Chungnam National University) ;
  • Hung, Nguyen Le (Department of Materials Science and Engineering, Chungnam National University) ;
  • Oh, Dong-Hoon (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyo-Jin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Do-Jin (Department of Materials Science and Engineering, Chungnam National University)
  • 정훈철 (충남대학교 공과대학 재료공학과) ;
  • 안은성 (충남대학교 공과대학 재료공학과) ;
  • 웬래훙 (충남대학교 공과대학 재료공학과) ;
  • 오동훈 (충남대학교 공과대학 재료공학과) ;
  • 김효진 (충남대학교 공과대학 재료공학과) ;
  • 김도진 (충남대학교 공과대학 재료공학과)
  • Published : 2009.11.27

Abstract

We investigated the effects of Co doping on the NO gas sensing characteristics of ZnO-carbon nanotube (ZnO-CNT) layered composites fabricated by coaxial coating of single-walled CNTs with ZnO using pulsed laser deposition. Structural examinations clearly confirmed a distinct nanostructure of the CNTs coated with ZnO nanoparticles of an average diameter as small as 10 nm and showed little influence of doping 1 at.% Co into ZnO on the morphology of the ZnO-CNT composites. It was found from the gas sensing measurements that 1 at.% Co doping into ZnO gave rise to a significant improvement in the response of the ZnO-CNT composite sensor to NO gas exposure. In particular, the Co-doped ZnO-CNT composite sensor shows a highly sensitive and fast response to NO gas at relatively low temperatures and even at low NO concentrations. The observed significant improvement of the NO gas sensing properties is attributed to an increase in the specific surface area and the role as a catalyst of the doped Co elements. These results suggest that Co-doped ZnOCNT composites are suitable for use as practical high-performance NO gas sensors.

Keywords

References

  1. C. A. Grimes, E. C. Dickey and M. V. Pishko, ed., Encyclopedia of Sensors, American Scientific Publishers (2006)
  2. J. Xu, Q. Pan, Y. Shun and Z. Tian, Sens. Actuators B, 66, 277 (2000) https://doi.org/10.1016/S0925-4005(00)00381-6
  3. T. Gao and T. H. Wang, Appl. Phys. A, 80, 1451 (2005) https://doi.org/10.1007/s00339-004-3075-2
  4. Z. Fan and J. G. Lu, J. Nanosci. Nanotech., 5, 1561 (2005) https://doi.org/10.1166/jnn.2005.182
  5. A. O. Dikovska, Sens. Actuators A, 140, 19 (2007) https://doi.org/10.1016/j.sna.2007.05.032
  6. S.-M. Park, S.-L. Zhang and J. H. Huh, Kor. J. Mater. Res., 18, 367 (2008) (in Korean) https://doi.org/10.3740/MRSK.2008.18.7.367
  7. J. Kong, N. R. Franklin, C. Zhou, M. C. Chapline, S. Peng, J. Cho and H. Dai, Science, 287, 622 (2000) https://doi.org/10.1126/science.287.5453.622
  8. P. G. Collins, K. Bradley, M. Ishigami and A. Zettl, Science, 287, 1801 (2000) https://doi.org/10.1126/science.287.5459.1801
  9. A. Wisitsoraat, A. Tuantranont, C. Thanachyanont and P. Singjai, in Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems (Zhuhai, China, January 2006), p. 1487 https://doi.org/10.1109/NEMS.2006.334813
  10. K. H. An, S. Y. Jeong, H. R. Hwang and Y. H. Lee, Adv. Mater., 16, 1005 (2004) https://doi.org/10.1002/adma.200306176
  11. S. Y. Park, H. Jung, E. Ahn, L. H. Nguyen, Y. Kang, H. Kim and D. Kim, Kor. J. Mater. Res., 18, 655 (2008) (in Korean) https://doi.org/10.3740/MRSK.2008.18.12.655
  12. S. Ahlers, G. Muller and Th. Doll, in Encyclopedia of Sensors, p.413, ed. C. A. Grimes, E. C. Dickey and M. V. Pishko, American Scientific Publishers, Stevenson Ranch, USA (2006)
  13. J. F. Chang, H. H. Kuo, I. C. Leu and M. H. Hon, Sens. Actuators B, 84, 258 (2002) https://doi.org/10.1016/S0925-4005(02)00034-5
  14. H. Nanto, T. T. Minami and S. Takata, J. Appl. Phys., 60, 482 (1986) https://doi.org/10.1063/1.337435
  15. L. C. Tien, P. W. Sadik, D. P. Norton, L. F. Voss, S. J. Pearton, H. T. Wang, B. S. Kang, F. Ren, J. Jun and J. Lin, Appl. Phys. Lett., 87, 222106 (2005) https://doi.org/10.1063/1.2136070
  16. Y. Kang, D. Oh, H. Song, J. Jung, H. Jung, Y. Cho and D. Kim, Kor. J. Mater. Res., 18, 253 (2008) (in Korean) https://doi.org/10.3740/MRSK.2008.18.5.253
  17. J. L. Solis and V. Lantto, Sens. Actuators B, 48, 322 (1998) https://doi.org/10.1016/S0925-4005(98)00065-3
  18. R. W. J. Scott, S. M. Yang, G. Chabanis, D. E. Williams and G. A. Ozin, Adv. Mater., 13, 1468 (2001) https://doi.org/10.1002/1521-4095(200110)13:19<1468::AID-ADMA1468>3.0.CO;2-O
  19. S. C. Naisbitt, K. F. E. Pratt, D. E. Williams and I. P. Parkin, Sens. Actuators B, 114, 969 (2006) https://doi.org/10.1016/j.snb.2005.07.058