DOI QR코드

DOI QR Code

Optimal Conditions for the Production of Salt-tolerant Protease from Aspergillus sp. 101 and Its Characteristics

Aspergillus sp. 101로부터 내염성 단백분해효소 생산을 위한 최적 조건 및 특성

  • Hwang, Joo-Yeon (Dept. of Applied Biology and Chemistry, Konkuk University) ;
  • Choi, Seung-Hwa (Faculty of Marine Bioscience and Technology, Gangneung-Wonju National University) ;
  • Lee, Si-Kyung (Dept. of Applied Biology and Chemistry, Konkuk University) ;
  • Kim, Sang-Moo (Faculty of Marine Bioscience and Technology, Gangneung-Wonju National University)
  • 황주연 (건국대학교 응용생물화학과) ;
  • 최승화 (강릉원주대학교 해양생명공학부) ;
  • 이시경 (건국대학교 응용생물화학과) ;
  • 김상무 (강릉원주대학교 해양생명공학부)
  • Published : 2009.11.30

Abstract

Aspergillus sp. 101 was isolated from the Korean traditional soybean paste for the production of a salt-tolerant protease. The optimal condition for the production of a salt-tolerant protease was determined with various energy sources such as carbon, nitrogen, and protein, and at different culture conditions such as temperature, pH, incubation time and NaCl concentration. The most favorable organic nitrogen sources were 2% defatted soybean flour (DSF) and soy protein isolate (SPI). Optimal pH and temperature were pH 6.0 and $25{\sim}27^{\circ}C$, respectively. Therefore, Aspergillus sp. 101 protease was a mild acid (or neutral) protease. Protease production was the highest at 0.1% concentration of $CaCO_3,\;K_2HPO_4$ and Arabicgum. Aspergillus sp. 101 could grow in culture medium at 15% NaCl concentration and produce a salt-tolerant protease even at 7% NaCl. The cell mass and protease activity of Aspergillus sp. 101 cultured in a modified medium was comparatively higher in Czapek dox and protease producing media. Hence, Aspergillus sp. 101 protease can be utilized in soy or fish sauce industry as a salt-tolerant protease starter.

단백질 식품의 가공에 이용할 수 있는 내염성 단백분해효소를 생산하기 위하여, 된장에서 분리한 Aspergillus sp. 101균으로부터 내염성 단백분해효소생산을 위한 최적 배지조성을 확립하였다. 질소원으로서 대두단백원인 탈지대두분(DSF)과 분리대두단백(SPI)을 각각 2% 첨가 시에 효소 활성이 가장 높았고, 무기질소원으로 $CaCO_3$$K_2HPO_4$이 각각 0.1%씩 첨가 시에 가장 좋은 결과를 얻었다. 또한 Arabic gum을 배양액에 0.1% 첨가하였을 때, 효소 활성이 가장 높았다. Aspergillus sp. 101은 최고 15% NaCl 농도의 agar plate에서 생육이 가능하였으며, 조효소 또한 NaCl 7%까지 안정하였다. 이와 같이 조정 배지(modified medium)에 Aspergillus sp. 101에 의해 생산된 내염성 단백분해효소는 일반적인 곰팡이류의 단백분해효소 생산용 배지에 비해 생산성이 높았으며, 최적배지에서 배양한 Aspergillus sp. 101 유래 단백분해효소에 의한 어육단백질 가수분해물의 기능 개선 또는 식품첨가물로서의 활용은 단백분해효소 생산의 산업화를 가능하게 하는 것으로 보인다.

Keywords

References

  1. Kim D.S, Kim H.R, Nam T.J, Pyeun J.H. 1999. Medium composition of Aspergillus oryzae PF for the production of proteolytic enzyme. Kor J Appl Microbiol Biotechnol 27: 404-409
  2. Lee S.S, Sung C.K, Hae J.C, Yu J.Y. 1997. Kanjang and meju made with a single inoculums of the microorganism isolated from the Korean traditional meju. J Korean Soc Food Sci Nutr 26: 751-758
  3. John C.A, John O.M, William E.S. 1980. Microbiology of Foods. W. H. Freeman and Company, San Francisco, USA p 238-246
  4. Jeong M.J. 1997. Studies on the proteolytic enzyme of mold. Kor J Appl Microbiol Bioeng 5: 153-158
  5. Jeong M.J. 1977. Studies on the proteolytic enzyme produced by Rhizopus japonicus S-62. Kor J Appl Microbiol Bioeng 9: 31-35
  6. Jeong M.J. 1984. Studies on the characteristics of Rhizopus japonicus acid protease Ⅰ and Ⅱ. Kor J Appl Microbiol Bioeng 12: 179-183
  7. Park J.H, Kim Y.M, Kim D.S, Kim S.M. 2005. Functionality of low molecular weight peptides of accelerately manufactured anchovy sauce with Bacillus subtillis JM3 protease. Korean J Food Sci Technol 37: 827-832
  8. Kim S.K, Park P.J, Kim K.H. 2000. Preparation of sauce from enzymetic hydrolysates of cod frame protein. J Korean Soc Food Sci Nutr 29: 635-641
  9. Jeong K.H, Seo J.H, Jeong Y.J. 2005. Characteristics of soybean hydrolysates prepared with various protease. Korean J Food Preserv 12: 460-464
  10. Chae H.J, In M.J, Kim M.H. 1997. Production and characteristic of enzymetically hydrolyzed soy sauce by the treatment using protease. J Korean Soc Food Sci Nutr 26: 784-787
  11. Hwang J.Y, Kim S.M, Heo S.O, Kim C.J, Lee C.H, Lee S.K. 2008. Purification and characterization of a novel salt-tolerant protease produced by Saccharomyce scerevisiae B101 isolated from baker's yeast dough. Food Sci Biotech 17: 766-771
  12. Tsujita Y, Endo A. 1978. Presence and partial characterization of internal acid protease of Aspergillus oryzae. Appl Environ Microbiol 36: 237-242
  13. Kim D.S, Kim H.R, Nam T.J, Pyeun J.H. 1998. Strain improvement of Aspergillus oryzae for increasing productivity of a proteolytic enzyme. Kor J Appl Microbial Biotechnol 26: 490-496
  14. Pollack R.A, Finally L, Mondschein W, Modesto R.R. 2005. Laboratory Exercises in Microbiology. John Wiley & Sons, Inc., Hoboken, NJ, USA. p 96
  15. Anson M.L. 1939. The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. J Gen Physiol 22: 79-91 https://doi.org/10.1085/jgp.22.1.79
  16. Lowry O.H, Rosebrough N.J, Farr A.L, Randull R.J. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275
  17. So M.H. 1993. Conditions for the production of amylase and protease in making wheat flour Nuluk by Rhizous japonicus T2. Korean J Food Nutr 6: 96-102
  18. Yaichi F, Itoh H, Fukase T, Motai H. 1989. Continuous protease production in a carbon limited chemostat culture by salt tolerant Aspergillus oryzae. Appl Microbiol Biotechnol 30: 604-608
  19. Lee M.J, Chung M.J. 1980. Studies on the production of protease by Aspergillus oryzae KV-15 and characteristics of the enzymes. Korean J Appl Microbiol Bioeng 8: 77-85
  20. Bhumibhamon O. 1982. Effect of some surfactants on the production of acid protease by Aspergillus phoenicis and Aspergillus awamori. J Ferment Technol 60: 167-169
  21. Byun M.O, Lee S.B, Ku B.S, Song J.K, Leu J.C, Lee D.H. 1999. Identification and characterization of osmotolerant yeast isolated from soy paste. Korean J Mycology 27: 181-186

Cited by

  1. Growth Inhibitory Effects of Doenjang, Prepared with Various Solar Salts, on Cancer Cells vol.19, pp.2, 2012, https://doi.org/10.11002/kjfp.2012.19.2.278
  2. Isolation of Protease Producing Microorganisms vol.36, pp.4, 2014, https://doi.org/10.4491/KSEE.2014.36.4.265
  3. Biological Activity and Chemical Characteristics of Fermented Acanthopanax senticosus by Mold vol.22, pp.12, 2012, https://doi.org/10.5352/JLS.2012.22.12.1704
  4. Characteristic of Glasswort (Salicornia Herbacea L.) Mixture Fermentation Utilizing Aspergillus oryzae vol.39, pp.9, 2010, https://doi.org/10.3746/jkfn.2010.39.9.1384
  5. Cultural Characteristics of Fungi Strains isolated from Korean Nuruk vol.26, pp.2, 2016, https://doi.org/10.17495/easdl.2016.4.26.2.125