DOI QR코드

DOI QR Code

Determination of Steel-concrete Interface Parameters: Me chanical Properties of Interface Parameters

강-콘크리트 계면의 계면상수 결정 : 계면상수의 역학적 성질

  • Published : 2009.12.31

Abstract

Mechanical properties of steel-concrete interface were evaluated on the basis of experimental observations. The properties included bond strength, unbounded and bonded friction angles, residual level of friction angle, mode I fracture energy, mode II bonded fracture energy and unbonded slip-friction energy under different levels of normal stress, and shape parameters to define geometrical shape of failure envelope. For this purpose, a typical type of constitutive model of describing steel-concrete interface behavior was presented based on a hyperbolic three-parameter Mohr-Coulomb type failure criterion. The constitutive model depicts the strong dependency of interface behavior on bonding condition of interface, bonded or unbounded. Values of the interface parameters were determined through interpretation of experimental results, geometry of failure envelope and sensitivity analysis. Nonlinear finite element analysis that incorporates steel-concrete interface as well as material nonlinearities of concrete and steel were performed to predict the experimental results.

강-콘크리트 계면의 성질을 대표하는 부착강도, 부착 및 비부착 마찰계수, 부착 및 비부착 마찰계수의 연화영역에서 잔류량의 크기, 모드 I 파괴에너지, 부착 및 비부착 모드 II 파괴에너지, 파괴포락선의 형상계수를 포함한 총 9개 계면상수의 값을 계면거동실험결과와 파괴포락선의 기하학적 형상 및 구성모델을 이용하는 민감도 해석을 통해 결정하였다. 계면의 거동이 계면의 부착상태뿐만 아니라 계면법선방향 응력의 방향과 크기에 따라 매우 민감하게 작용하므로 계면상수 값의 결정에서는 이러한 구속압의 크기와 부착 및 비부착 계면조건을 고려하였다. 강재판 사이에 콘크리트가 타설된 강-콘크리트 계면실험체의 거동해석을 위한 계면유한요소해석을 결정된 계면상수를 적용하여 수행하였으며 실험결과와의 비교를 통해 상수값의 적정성을 검토하였다.

Keywords

References

  1. Kantona, M. G., “A Simple Contact-Friction Interface Element with Applications to Buried Culverts,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 7, No. 3, 1983 pp. 371-384 https://doi.org/10.1002/nag.1610070308
  2. Plesha M. E., “Constitutive Models for Rock Discontinuities with Dilatancy and Surface Degradation,” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 11, No. 4, 1987 pp. 345-362 https://doi.org/10.1002/nag.1610110404
  3. Stankowski, T., Runesson, K., and Sture, S., “Fracture and Slip of Interfaces in Cementitious Composites. I: Characteristics,” Journal of Engineering Mechanics, ASCE, Vol. 119, No. 2, 1993, pp. 315-327 https://doi.org/10.1061/(ASCE)0733-9399(1993)119:2(315)
  4. Stankowski, T., Runesson, K., and Sture, S., “Fracture and Slip of Interfaces in Cementitious Composites. II : Implementation,” Journal of Engineering Mechanics, Vol. 119, No. 2, 1993, pp. 315-327 https://doi.org/10.1061/(ASCE)0733-9399(1993)119:2(315)
  5. Lotfi, H. R. and Shing, P. B., “Interface Model Applied to Fracture of Masonry Structures,” Journal of Structural Engineering, ASCE, Vol. 120, No. 1, 1994, pp. 63-79 https://doi.org/10.1061/(ASCE)0733-9445(1994)120:1(63)
  6. Carol, I., Prat, P. C., and Lopez, C. M., “Normal/Shear Cracking Model : Application to Discrete Crack Analysis,” Journal of Engineering Mechanics, ASCE, Vol. 123, No. 8, 1997, pp. 765-773 https://doi.org/10.1061/(ASCE)0733-9399(1997)123:8(765)
  7. Hajjar, J. F., Schiller, P. H., and Molodan, A., “A Distributed Plasticity Model for Concrete-filled Steel Tube Beam-Coulmns with Interlayer Slip,” Engineering Structures, Vol. 20, No. 8, 1998, pp. 663-676 https://doi.org/10.1016/S0141-0296(97)00107-7
  8. Soh, C. K., Chiew, S. P., and Dong, Y. X., “Damage Model for Concrete-Steel Interface,” J. of Engrg. Mech., ASCE, Vol. 125, No. 8, 1999, pp. 979-983 https://doi.org/10.1061/(ASCE)0733-9399(1999)125:8(979)
  9. Lei, X. Y., “Contact Friction Analysis with a Simple Interface Element,” Computer Methods in Appl. Mech. and Engrg., Vol. 190, 2001, pp. 1955-1965 https://doi.org/10.1016/S0045-7825(00)00196-1
  10. Rabbat, B. G. and Russell, H. G., “Friction Coeffcient of Steel on Concrete or Grout,” Journal of Structural Engineering, ASCE, Vol. 111, No. 3, March, 1985, pp. 505-515 https://doi.org/10.1061/(ASCE)0733-9445(1985)111:3(505)
  11. Shakir-Khalil, H., “Pushout Strength of Concrete-Filled Steel Hollow Sections,” The Structural Engineer, Vol. 71, No. 13, 1993, pp. 230-233
  12. Shakir-Khalil, H., “Resistance of Concrete-filled Steel Hollow Sections,” The Structural Engineer, Vol. 71, No. 13, 1993, pp. 234-243
  13. Shakir-Khalil, H. and Hassan, N. K. A., “Push-out Resistance of Concrete-filled Tubes,” Tubular Structures, Grundy, P., Holgate, A., and Wong. W.(eds), Melbourne, Australia, A. A. Balkema, Rotterdam, The Netherlands, 1994, pp. 285-291
  14. Chajes, M. J., Finch, W. W. Jr., Januszka, T. F., and Thomson, T. A. Jr., "Bond and Force Transfer of Composite Material Plates Bonded to Concrete, ACI Struct. J., Vol. 93, No. 2, 1996, pp. 208-217
  15. Chiew, S. P., Dong, Y. X., and Sho, C. K., “Concrete-steel Plate Interface Characteristics for Composite Construction,” Computing Developments in Civil and Structural Engineering, 1999, pp. 35-40
  16. Barnes, R. A. and Mays, G. C., “The Transfer of Stress through a Steel to Concrete Adhesive Bond,” International Journal of Adhesion & Adhesives, Vol. 21, No. 6, 2001, pp. 495-502 https://doi.org/10.1016/S0143-7496(01)00031-8
  17. 주영태, 이용학, “강-콘크리트 계면파괴에 관한 비 선형유한요소해석,” 한국콘크리트학회 학술발표회논문집, 16권, 2호, 2004, pp. 105-108
  18. 주영태, “부착 및 슬립을 고려한 강-콘크리트 계면거동의 점진적 유한요소해석,” 건국대학교 토목공학과, 박사학위 논문, 2005
  19. Lee, Y. H. and Willam, K., “Anisotropic Vertex Plasticity Formulation of Concrete In-plane Stress,” J. of Engr. Mech., ASCE, Vol. 123, No. 7, 1995, pp. 714-726
  20. 이용학, “콘크리트 3차원 구성모델을 위한 네 계수 파괴 포락선의 개발,” 대한토목학회 논문집, 19권, I-1호, 1999, pp. 79-88

Cited by

  1. Interface Behavior of Concrete Infilled Steel Tube Composite Beam vol.18, pp.5, 2014, https://doi.org/10.11112/jksmi.2014.18.5.009