DOI QR코드

DOI QR Code

Microbial Community Analysis using RDP II (Ribosomal Database Project II):Methods, Tools and New Advances

  • Cardenas, Erick (Center for Microbial Ecology, Michigan State University) ;
  • Cole, James R. (Center for Microbial Ecology, Michigan State University) ;
  • Tiedje, James M. (Center for Microbial Ecology, Michigan State University,School of Civil and Environmental Engineering, Yonsei University) ;
  • Park, Joon-Hong (School of Civil and Environmental Engineering, Yonsei University)
  • 발행 : 2009.03.31

초록

Microorganisms play an important role in the geochemical cycles, industry, environmental cleanup, and biotechnology among other fields. Given the high microbial diversity, identification of the microorganism is essential in understanding and managing the processes. One of the most popular and powerful method for microbial identification is comparative 16S rRNA gene analysis. Due to the highly conserved nature of this essential gene, sequencing and later comparison of it against known rRNA databases can provide assignment of the bacteria into the taxonomy, and the identity of its closest relatives. Isolation and sequencing of 16S rRNA genes directly from natural environments (either from DNA or RNA) can also be used to study the structure of the whole microbial community. Nowadays, novel sequencing technologies with massive outputs are giving researchers worldwide the chance to study the microbial world with a depth that was previously too expensive to achieve. In this article we describe commonly used research approaches for the study of individual microorganisms and microbial communities using the tools provided by Ribosomal Database Project website.

키워드

참고문헌

  1. Dykhuizen, D. E., “Santa Rosalia revisited: why are there so many species of bacteria?” Antonie Van Leeuwenhoek, 73, 25-33 (1998) https://doi.org/10.1023/A:1000665216662
  2. Skinner, F. A., Jones, P. C., and Mollison, J. E., “A comparison of a direct- and a plate counting technique for the quantitative estimation of soil micro-organisms,” J. Gen Microbiol., 6, 261-271 (1952) https://doi.org/10.1099/00221287-6-3-4-261
  3. Janssen, P. H., Yates, P. S., Grinton, B. E., Taylor, P. M., and Sait, M., “Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia,” Appl. Environ. Microbiol., 68, 2391-2396 (2002) https://doi.org/10.1128/AEM.68.5.2391-2396.2002
  4. Miller, S. R., Augustine, S., Olson, T. L., Blankenship, R. E., Selker, and J., Wood, A. M., “Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene,” Proc. Natl. Acad. Sci. USA, 102, 850-855 (2005) https://doi.org/10.1073/pnas.0405667102
  5. Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R., “Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy,” Appl. Environ. Microbiol., 73, 5261-5267 (2007) https://doi.org/10.1128/AEM.00062-07
  6. Persoh, D., Theuerl, S., Buscot, F., and Rambold, G., “Towards a universally adaptable method for quantitative extraction of high-purity nucleic acids from soil,” J. Microbiol. Methods., 75, 19-24 (2008) https://doi.org/10.1016/j.mimet.2008.04.009
  7. Sanger, F., Nicklen, S., and Coulson, A. R., “DNA sequencing with chain-terminating inhibitors,” Proc. Natl. Acad. Sci. USA, 74, 5463-5467 (1977) https://doi.org/10.1073/pnas.74.12.5463
  8. Maxam, A. M., and Gilbert, W., “A new method for sequencing DNA,” Proc. Natl. Acad. Sci. USA, 74, 560-564 (1977) https://doi.org/10.1073/pnas.74.2.560
  9. Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J., Chen, Z., Dewell, S. B., Du, L., Fierro, J. M., Gomes, X. V., Godwin, B. C., He, W., Helgesen, S., Ho, C. H., Irzyk, G. P., Jando, S. C., Alenquer, M. L. I., Jarvie, T. P., Jirage, K. B., Kim, J. B., Knight, J. R., Lanza, J. R., Leamon, J. H., Lefkowitz, S. M., Lei, M., Li, J., Lohman, K. L., Lu, H., Makhijani, V. B., McDade, K. E., McKenna, M. P., Myers, E. W., Nickerson, E., Nobile, J. R., Plant, R., Puc, B. P., Ronan, M. T., Roth, G. T., Sarkis, G. J., Simons, J. F., Simpson, J. W., Srinivasan, M., Tartaro, K. R., Tomasz, A., Vogt, K. A., Volkmer, G. A., Wang, S. H., Wang, Y., Weiner, M. P., Yu, P., Begley, R. F., and Rothberg, J. M., “Genome sequencing in microfabricated high-density picolitre reactors,” Nature, 437, 376-380 (2005)蠄⨀렄⨀᠅⨀怄⨀逄⨀쀄⨀ ⨀戄⨀鈄⨀숄⨀∅⨀胀���⨀Ȁ https://doi.org/10.1038/nature03959
  10. Nyren, P., Pettersson, B., and Uhlen, M., “Solid phase DNA minisequencing by an enzymatic luminometric inorganic pyrophosphate detection assay,” Anal. Biochem., 208, 171-175 (1993) https://doi.org/10.1006/abio.1993.1024
  11. Shendure, J., Porreca, G. J., Reppas, N. B., Lin, X., McCutcheon, J. P., Rosenbaum, A. M., Wang, M. D., Zhang, K., Mitra, R. D., and Church, G. M., “Accurate multiplex polony sequencing of an evolved bacterial genome,” Science, 309, 1728-1732 (2005) https://doi.org/10.1126/science.1117389
  12. Liu, Z., DeSantis, T. Z., Andersen, G. L., and Knight, R., “Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers,” Nucleic. Acids. Res., 36, e120 (2008) https://doi.org/10.1093/nar/gkn491
  13. Sogin, M. L., Morrison, H. G., Huber, J. A., Welch, D. M., Huse, S. M., Neal, P. R., Arrieta, J. M., and Herndl, G. J., “Microbial diversity in the deep sea and the underexplored “rare biosphere”,” Proc. Natl. Acad. Sci. USA, 103, 12115-12120 (2006) https://doi.org/10.1073/pnas.0605127103
  14. Huber, J. A., Welch, D. B. M., Morrison, H. G., Huse, S. M., Neal, P. R., Butterfield, D. A., and Sogin, M. L., “Microbial population structures in the deep marine biosphere,” Science, 318, 97-100 (2007) https://doi.org/10.1126/science.1146689
  15. Kanagawa, T., “Bias and artifacts in multitemplate polymerase chain reactions (PCR),” J. Biosci. Bioeng., 96, 317-323 (2003) https://doi.org/10.1016/S1389-1723(03)90130-7
  16. Sorek, R., Zhu, Y., Creevey, C. J., Francino, M. P., Bork, P., and Rubin, E. M., “Genome-wide experimental determination of barriers to horizontal gene transfer,” Science, 318, 1449-1452 (2007) https://doi.org/10.1126/science.1147112
  17. Ashelford, K. E., Chuzhanova, N. A., Fry, J. C., Jones, A. J., and Weightman, A. J., “At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies,” Appl. Environ. Microbiol., 71, 7724-7736 (2005) https://doi.org/10.1128/AEM.71.12.7724-7736.2005
  18. Ashelford, K. E., Chuzhanova, N. A., Fry, J. C., Jones, A. J., and Weightman, A. J., “New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras,” Appl. Environ. Microbiol., 72, 5734-5741 (2006) https://doi.org/10.1128/AEM.00556-06
  19. Huber, T., Faulkner, G., and Hugenholtz, P., “Bellerophon: a program to detect chimeric sequences in multiple sequence alignments,” Bioinformatics, 20, 2317-2319 (2004) https://doi.org/10.1093/bioinformatics/bth226
  20. Cole, J., Chai, B., Farris, R. J., Wang, Q., Kulam, S. A., McGarrell, D. M., Garrity, G. M., and Tiedje, J. M., “The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis,” Nucleic. Acids. Res., 33, D294-296 (2005) https://doi.org/10.1093/nar/gki038
  21. Allen, J. P., Atekwana, E. A., Duris, J. W., Werkema, D. D., and Rossbach, S., “The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures,” Appl. Environ. Microbiol., 73, 2860-2870 (2007) https://doi.org/10.1128/AEM.01752-06
  22. Kong, Y., Xia, Y., Nielsen, J. L., and Nielsen, P. H., “Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant,” Microbiology, 153, 4061-4073 (2007) https://doi.org/10.1099/mic.0.2007/007245-0
  23. Bedard, D. L., Bailey, J. J., Reiss, B. L., and Jerzak, G. V., “Development and characterization of stable sediment-free anaerobic bacterial enrichment cultures that dechlorinate aroclor 1260,” Appl. Environ. Microbiol., 72, 2460-2470 (2006) https://doi.org/10.1128/AEM.72.4.2460-2470.2006
  24. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic. Acids. Res., 25, 3389-3402 (1997) https://doi.org/10.1093/nar/25.17.3389
  25. Shiratori, H., Ikeno, H., Ayame, S., Kataoka, N., Miya, A., Hosono, K., Beppu, T., and Ueda, K., “Isolation and characterization of a new Clostridium sp. that performs effective cellulosic waste digestion in a thermophilic methanogenic bioreactor,” Appl. Environ. Microbiol., 72, 3702-3709 (2006) https://doi.org/10.1128/AEM.72.5.3702-3709.2006
  26. Moss, E., Microbial community structure in a trichloroethylene aquifer during Toluene stimulated bioremediation, Ph.D. dissertation, Michigan State University (2004)
  27. Schloss, P. D., and Handelsman, J., “Introducing SONS, a tool for operational taxonomic unit-based comparisons of microbial community memberships and structures,” Appl. Environ. Microbiol., 72, 6773-6779 (2006) https://doi.org/10.1128/AEM.00474-06
  28. Schloss, P. D., and Handelsman, “J. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness,” Appl. Environ. Microbiol., 71, 1501-1506 (2005) https://doi.org/10.1128/AEM.71.3.1501-1506.2005
  29. Rossello-Mora, R., and Amann, R., “The species concept for prokaryotes,” FEMS. Microbiol. Rev., 25, 39-67 (2001) https://doi.org/10.1016/S0168-6445(00)00040-1
  30. Konstantinidis, K. T., and Tiedje, J. M., “Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead,” Curr. Opin. Microbiol., 10, 504-509 (2007) https://doi.org/10.1016/j.mib.2007.08.006
  31. Stackebrandt, E., and Ebers, J., “Taxonomic parameters revisited: tarnished gold standards,” MICROBIOLOGY TODAY, 33, 152-155 (2006)
  32. Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P., and Tiedje, J. M., “DNA-DNA hybridization values and their relationship to whole-genome sequence similarities,” Int. J. Syst. Evol. Microbiol., 57, 81-91(2007) https://doi.org/10.1099/ijs.0.64483-0
  33. Sorensen, T., “A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons,” Biol. Skr., 5, 1-34 (1984)
  34. Jaccard, P., “Etude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del la Societe Vaudoise des Sciences,” Naturelles, 37, 547-579 (1901)
  35. Singleton, D. R., Furlong, M. A., Rathbun, S. L., and Whitman, W. B., “Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples,” Appl. Environ. Microbiol., 67, 4374-4376 (2001) https://doi.org/10.1128/AEM.67.9.4374-4376.2001
  36. Schloss, P. D., Larget, B. R., and Handelsman, J., “Integration of microbial ecology and statistics: a test to compare gene libraries,” Appl. Environ. Microbiol., 70, 5485-5492 (2004) https://doi.org/10.1128/AEM.70.9.5485-5492.2004
  37. Lozupone, C., and Knight, R., “UniFrac: a new phylogenetic method for comparing microbial communities,” Appl. Environ. Microbiol., 71, 8228-8235 (2005) https://doi.org/10.1128/AEM.71.12.8228-8235.2005
  38. Lozupone, C., Hamady, M., and Knight, R., “Uni Fracan online tool for comparing microbial community diversity in a phylogenetic context,” BMC Bioinformatics, 7, 371 (2006) https://doi.org/10.1186/1471-2105-7-371
  39. Martin, A. P., “Phylogenetic approaches for describing and comparing the diversity of microbial communities,” Appl. Environ. Microbiol., 68, 3673-3682 (2002) https://doi.org/10.1128/AEM.68.8.3673-3682.2002
  40. Schloss, P. D., “Evaluating different approaches that test whether microbial communities have the same structure,” ISME J., 2, 265-275 (2008) https://doi.org/10.1038/ismej.2008.5
  41. Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Marsh, T., Garrity, G. M., and Tiedje, J. M., “The Ribosomal Database Project: improved alignments and new tools for rRNA analysis,” Nucl. Acids. Res., 37, D141-145 (2009) https://doi.org/10.1093/nar/gkn879
  42. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G., “Clustal W and Clustal X version 2.0,” Bioinformatics, 23, 2947-2948 (2007) https://doi.org/10.1093/bioinformatics/btm404
  43. Edgar, R. C., “MUSCLE: multiple sequence alignment with high accuracy and high throughput,” Nucleic. Acids. Res., 32, 1792-1797 (2004) https://doi.org/10.1093/nar/gkh340
  44. Iwai, S., Chai, B., Sul, W. J., Cole, J. R., Hashsham, S. A., and Tiedje, J. M., “Exploring environmental biphenyl dioxygenase genes by clone libraries and pyrosequencing,” Twelveth International Symposium on Microbial Ecology (ISME-12), Cairns, Australia (2008)

피인용 문헌

  1. Characterization of microbial community structure and population dynamics of tetrachloroethene-dechlorinating tidal mudflat communities vol.22, pp.4, 2011, https://doi.org/10.1007/s10532-010-9429-x
  2. Application of a new purification method of West-Kazakhstan chestnut soil microbiota DNA for metagenomic analysis vol.48, pp.4, 2015, https://doi.org/10.1134/S1064229315040109
  3. Novel Biphenyl-Oxidizing Bacteria and Dioxygenase Genes from a Korean Tidal Mudflat vol.77, pp.11, 2011, https://doi.org/10.1128/AEM.00023-11
  4. Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX Titanium pyrosequencing vol.87, pp.6, 2010, https://doi.org/10.1007/s00253-010-2680-6
  5. genus as a toolkit to identify closely related bacterial species in complex environments vol.6, pp.2167-8359, 2019, https://doi.org/10.7717/peerj.6233
  6. The study of pathogenic microbial communities in graywater using membrane bioreactor vol.250, pp.2, 2009, https://doi.org/10.1016/j.desal.2009.09.025
  7. Speculation on the Identity of Bacteria Named TFOs Occurring in the Inefficient P-Removal Phase of a Biological Phosphorus Removal System vol.15, pp.1, 2009, https://doi.org/10.4491/eer.2010.15.1.003
  8. Bacterial community characterization of a sequencing batch reactor treating pre-ozonized sulfamethoxazole in water vol.34, pp.9, 2009, https://doi.org/10.1080/09593330.2012.758669
  9. Development and Characterization of PCE-to-Ethene Dechlorinating Microcosms with Contaminated River Sediment vol.26, pp.1, 2009, https://doi.org/10.4014/jmb.1510.10026