DOI QR코드

DOI QR Code

Comparative Quantification of LacZ (β-galactosidase) Gene from a Pure Cultured Escherichia coli K-12

  • Han, Ji-Sun (Department of Environmental Engineering, Inha University) ;
  • Kim, Chang-Gyun (Department of Environmental Engineering, Inha University)
  • Published : 2009.03.31

Abstract

Escherichia coli K-12 (E. coli K-12) is a representative indicator globally used for distinguishing and monitoring dynamic fates of pathogenic microorganisms in the environment. This study investigated how to most critically quantify lacZ ($\beta$-galactosidase) gene in E. coli K-12 by two different real-time polymerase chain reaction (real-time PCR) in association with three different DNA extraction practices. Three DNA extractions, i.e., sodium dodecyl sulfate (SDS)/proteinase K, magnetic beads and guanidium thiocyanate (GTC)/silica matrix were each compared for extracting total genomic DNA from E. coli K-12. Among them, GTC/silica matrix and magnetic beads beating similarly worked out to have the highest (22-23 ng/${\mu}L$) concentration of DNA extracted, but employing SDS/proteinase K had the lowest (10 ng/${\mu}L$) concentration of DNA retrieved. There were no significant differences in the quantification of the copy numbers of lacZ gene between SYBR Green I qPCR and QProbe-qPCR. However, SYBR Green I qPCR obtained somewhat higher copy number as $1{\times}10^8$ copies. It was decided that GTC/silica matrix extraction or magnetic beads beating in combination with SYBR Green I qPCR can be preferably applied for more effectively quantifying specific gene from a pure culture of microorganism.

Keywords

References

  1. L. Masco, L., Vanhoutte, T., Temmerman, R., Swings, J., and Huys, G., “Evaluation of real-time PCR targeting the 16S rRNA and recA genes for the enumeration of bifidobacteria in probiotic products,” Int. J. Food Microbiol., 113, 35-357 (2007) https://doi.org/10.1016/j.ijfoodmicro.2006.07.012
  2. Hilde, V. R., Ann, M., Wendy, O., Kristof, V., Tom, V., Willy, V., and Nico, B., “Real time PCR quantification in groundwater of the dehalorespiring Desulfitobacterium dichloroeliminans strain DCA1,” J. Microbiolo. Methods, 67, 294-303 (2006) https://doi.org/10.1016/j.mimet.2006.04.001
  3. Yin, L., Xiaoning, C. Xia, Z., Qili, G., Xiaochuan, Y., Zejun, Z., Maohuang, L., and Xitai, H., “Real time PCR using TaqMan and SYBR Green for detection of Enterobacter sakazakii in infant formula,” J. Microbiolo. Methods, 65, 21-31 (2006) https://doi.org/10.1016/j.mimet.2005.06.007
  4. Cecilia, S. M., Lucero, E., Lidia, C. V., Silvia, D. G., and Ana, M. S. G., “Comparison of DNA extraction methods for pathogenic Yersinia enterocolitica detection from meat food by nested PCR,” Food Res. Int., 40, 637-642 (2007) https://doi.org/10.1016/j.foodres.2006.11.008
  5. Chris, A. W. and Hannah, E. H., “Comparison of five commercial DNA extraction kits for the recovery of Francisella tularensis DNA from spiked soil samples,” Mol. Cell. Probes, 21, 92-96 (2007) https://doi.org/10.1016/j.mcp.2006.08.003
  6. Angela, D. P., VitoTony, F., Maria, C. G., Carmela, M., Francesco, P. S., and Giuseppina, T., “A comparison of DNA extraction methods for food analysis,” Food Control., 18, 76-80 (2007) https://doi.org/10.1016/j.foodcont.2005.08.011
  7. Klerksa, M. M., Zijlstra, C., and van Bruggen, A. H. C., “Comparison of real-time PCR methods for detection of Salmonella enterica and Escherichia coli O157:H7, and introduction of a general internal amplification control,” J. Microbiolo. Methods, 59, 337-349 (2004) https://doi.org/10.1016/j.mimet.2004.07.011
  8. Yaming, W., Wei, Z., and David, E. L., “Nuclear and cytoplasmic mRNA quantification by SYBR green based realtime RT-PCR,” Methods, 39, 356-362 (2006) https://doi.org/10.1016/j.ymeth.2006.06.010
  9. Tetsushi, S., Nana, M., and Takahiro, K., “A proportional analysis method using non-kinetic real-time PCR,” J. Bio technol., 128, 41-49 (2007) https://doi.org/10.1016/j.jbiotec.2006.09.022
  10. Scott, T. M., Rose, J. B., Jenkins, T. M., Farrah, S. R., and Lukasik, J., “Microbial source tracking: current methodology and future directions,” Appl. Environ. Microbiol., 68, 5796-5803 (2002) https://doi.org/10.1128/AEM.68.12.5796-5803.2002
  11. Braeden, D. W., Don, B., and Craig, C. S., “MagnesilTM paramagnetic particles: Novel magnetics for DNA purification,” Promega Notes, 69, 12 (1998)
  12. Kuske, C. R., Banton, K. L., Adorada, D. L., Stark, P. C., Hill, K. K., and Jackson, P. L., “Small scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil,” Appl. Environ. Microbiol., 64, 2463-2472 (1998)
  13. Irimia, D., Mindrinos, M., Russom, A., Xiao, W., Wilhelmy, J., Wang, S., Heath, J. D., Kurn, N., Tompkins, R. G., Davis, R. W., and Toner, M., “Genome-wide transcriptome analysis of 150 cell samples,” Integr. Biol., 1, 99-107 (2009) https://doi.org/10.1039/b814329c
  14. Chris, A. W. and Hannah, E. H., “Comparison of five commercial DNA extraction kits for the recovery of Francisella tularensis DNA from spiked soil samples,” Mol. Cell Probes, 21, 92-96 (2007) https://doi.org/10.1016/j.mcp.2006.08.003
  15. Mitchell, R. and Gu, M. B., “An Escherichia coli biosensor capable of detecting both genotoxic and oxidative damage,” Appl. Microbiol. Biotechnol., 64(1), 46-52 (2004) https://doi.org/10.1007/s00253-003-1418-0
  16. Tijssen, P., Li, Y., El-Far, M., Szelei, J., Letarte, M., and Za´dori, Z., “Organization and expression strategy of the ambisense genome of densonucleosis virus of Galleria mellonella,” J. virol., 77(19), 10357-10365 (2003) https://doi.org/10.1128/JVI.77.19.10357-10365.2003
  17. George, S. M., “A simple extraction method suitable for PCR based analysis of plant, fungal, and bacterial DNA,” Plant Mol. Biol., 22, 71-81 (2004) https://doi.org/10.1007/BF02773351
  18. United States Environmental Protection Agency, Ambient water quality criteria for bacteria, Washington D. C., USA (1986)
  19. Ahn, Y. H., Lee, J. W., Kim, H. C., and Kwon S. Y., “Lithoautotrophic nitrogen removal with anaerobic granular sludge as seed biomass and its microbial community,” Environ. Eng. Res., 11(4) 173-180 (2006) https://doi.org/10.4491/eer.2006.11.4.173
  20. Kim, J. S., Min, K. A., Cho, K. S., and Lee, I. S., “Enhanced bioremediation and modified bacterial community structure by barn-yard grass in diesel-contaminated soil,” Environ. Eng. Res., 12(2), 37-45 (2007) https://doi.org/10.4491/eer.2007.12.2.037
  21. Kim, J. E., Kim, T. S., Cho, S. H, Cho, M., Yoon, J. Y., Shea, P. J., and Oh, B. T., “Surficial Disinfection of Escheriachia coli-contaminated playground soil by UV irradiation,” Environ. Eng. Res., 12(2), 64-71 (2007) https://doi.org/10.4491/eer.2007.12.2.064
  22. Lee, T. H., Kurata, S., Nakatsu, C. H., and Kamagata, Y., “Molecular analysis of bacterial community based on 16S rDNA and functional genes in activated sludge enriched with 2,4-dichlorophenoxyacetic acid (2,4-D) under different cultural conditions,” Microbial Ecology, 49, 151-162 (2005) https://doi.org/10.1007/s00248-003-1035-6