DOI QR코드

DOI QR Code

Adsorption Characteristics of As(V) onto Cationic Surfactant-Modified Activated Carbon

  • Choi, Hyun-Doc (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Park, Sung-Woo (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Ryu, Byung-Gon (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Cho, Jung-Min (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Kim, Kyung-Jo (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Baek, Ki-Tae (Department of Environmental Engineering, Kumoh National Institute of Technology)
  • 발행 : 2009.09.30

초록

Arsenic at abandoned mine sites has adversely affected human health in Korea. In this study, the feasibility of using cationic surfactant-modified activated carbon (MAC) to remove As(V) was evaluated in terms of adsorption kinetics, adsorption isotherms, and column experiments. The adsorption of As(V) onto MAC was satisfactorily simulated by the pseudo-second-order kinetics model and Langmuir isotherm model. In column experiments, the breakthrough point of AC was 28 bed volumes (BV), while that of MAC increased to 300 BV. The modification of AC using cationic surfactant increased the sorption rate and sorption capacity with regard to As(V). As a result, MAC is a promising adsorbent for treating As(V) in aqueous streams.

키워드

참고문헌

  1. Lee, S., “Geochemistry and partitioning of trace metals in paddy soils affected by metal mine tailings in Korea,” Geoderma, 135, 26-37 (2006). https://doi.org/10.1016/j.geoderma.2005.11.004
  2. Concas, A., Ardau, C., Cristini, A., Zuddas, P., and Cao, G., “Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site,” Chemosphere, 63, 244-253 (2006). https://doi.org/10.1016/j.chemosphere.2005.08.024
  3. Lee, C.-G., Chon, H.-T., and Jung, M.-C., “Heavy metal contamination in the vicinity of the Daduk Au-Ag-Pb-Zn mine in Korea,” Appl. Geochem., 16, 1377-1386 (2001). https://doi.org/10.1016/S0883-2927(01)00038-5
  4. Basar, C. A., Aydiner, C., Kara, S., and Keskinler, B., “Removal of CrO4 anions from waters using surfactant enhanced hybrid PAC/MF process,” Sep. Purif. Technol., 48, 270-280 (2006). https://doi.org/10.1016/j.seppur.2005.07.033
  5. Jeon, C.-S., Baek, K., Park, J.-K., Oh, Y.-K., and Lee, S.-D., “Adsorption characteristics of As(V) onto iron-coated zeolite,” J. Hazard. Mater., 163, 804-808 (2009). https://doi.org/10.1016/j.jhazmat.2008.07.052
  6. Zaw, M. and Emett, M. T., “Arsenic removal from water using advanced oxidation processes,” Toxicol. Lett., 133, 113-118 (2002). https://doi.org/10.1016/S0378-4274(02)00081-4
  7. Mohan, D. and Pittman Jr., C. U., “Arsenic removal from water/wastewater using adsorbents-A critical review,” J. Hazad. Mater., 142, 1-53 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.006
  8. Chuang, C. L., Fan, M., Xu, M., Brown, R. C., Sung, S., Saha, B., and Huang, C. P., “Adsorption of arsenic(V) by activated carbon prepared from oat hulls,” Chemosphere, 61, 478-483 (2005). https://doi.org/10.1016/j.chemosphere.2005.03.012
  9. Loukidou, M. X., Matis, K. A., Zouboulis, A. I., and Liakipoulou- Kyriakidou, M., “Removal of As(V) from wastewaters by chemically modified fungal biomass,” Water Res., 37, 4544-4552 (2003). https://doi.org/10.1016/S0043-1354(03)00415-9
  10. Chutia, P., Kato, S., Kojima, T., and Satokawa, S., “Adsorption of As(V) on surfactant-modified natural zeolite,” J. Hazard. Mater., 162, 204-211 (2009). https://doi.org/10.1016/j.jhazmat.2008.05.024
  11. Natale, F. D., Erto, A., Lancia, A., and Musmarra, D., “Experimental and modeling analysis of As(V) ions adsorption on granular activated carbon,” Water Res., 42, 2007-2016 (2008). https://doi.org/10.1016/j.watres.2007.12.008
  12. Wu, Y., Ma, X., Feng, M., and Liu, M., “Behavior of chromium and arsenic on activated carbon,” J. Hazard. Mater., 159, 380-384 (2008). https://doi.org/10.1016/j.jhazmat.2008.02.059
  13. Kundu, S. and Gupta, A. K., “Adsorption characteristics of As(III) from aqueous solution on iron-oxide coated cement (IOCC),” J. Hazard. Mater., 142, 97-104 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.059
  14. Bingol, A., Ucun, H., Bayhan, Y. K., Karagunduz, A., Cakici, A., and Keskinler, B., “Removal of chromate anions from aqueous stream by a cationic surfactant-modified yeast,” Bioresource Technol., 94, 245-249 (2004). https://doi.org/10.1016/j.biortech.2004.01.018
  15. Choi, H.-D., Shin, M.-C., Kim, D.-H., Jeon, C.-S., and Baek, K., “Removal characteristics of reactive black 5 using surfactant-modified activated carbon,” Desalination, 223, 290-298 (2008). https://doi.org/10.1016/j.desal.2007.01.224
  16. Choi, H. D., Cho, J.-M., Baek, K., Yang, J.-S., and Lee, J.-Y., “Influence of cationic surfactant on adsorption of Cr(VI) onto activated carbon,” J. Hazard. Mater., 161, 1565-1568 (2009). https://doi.org/10.1016/j.jhazmat.2008.04.067
  17. Choi, H.-D., Jung, W.-S., Cho, J.-M., Ryu, B.-G., Yang, J.-S., and Baek, K., “Adsorption of Cr(VI) onto cationic surfactant-modified activated carbon,” J. Hazard. Mater., 166, 642-646 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.076
  18. Ho, Y.-S., “Review of second-order models for adsorption systems,” J. Hazard. Mater., 136, 681-689 (2006). https://doi.org/10.1016/j.jhazmat.2005.12.043
  19. Azizian, S., “Kinetic model of sorption: a theoretical analysis,” J. Colloid Interf. Sci., 276, 47-52 (2004). https://doi.org/10.1016/j.jcis.2004.03.048
  20. Sparks, D. L., “Environmental soil chemistry,” Academic Press 99-110 (1995).
  21. Kim, H.-C., Park, S.-J., Lee, C.-G., Han, Y.-U., Park, J.-A., and Kim, S.-B., “Humic acid removal from water by ironcoated sand: A column experiment,” Environ. Eng. Res., 14, 41-47 (2009). https://doi.org/10.4491/eer.2009.14.1.041

피인용 문헌

  1. Removal of Metal Ions From Aqueous Solutions Using Sawdust Modified with Citric Acid or Tartaric Acid vol.45, pp.12-13, 2010, https://doi.org/10.1080/01496395.2010.493782
  2. Influence of mixed-surfactant on reductive dechlorination of trichloroethylene by zero-valent iron vol.28, pp.4, 2011, https://doi.org/10.1007/s11814-010-0473-3
  3. Application of iron-coated zeolites (ICZ) for mine drainage treatment vol.29, pp.9, 2012, https://doi.org/10.1007/s11814-012-0013-4
  4. Electrokinetic Removal of Petroleum Hydrocarbon from Residual Clayey Soil Following a Washing Process vol.38, pp.2, 2010, https://doi.org/10.1002/clen.200900190
  5. Pulsed electrokinetic removal of Cd and Zn from fine-grained soil vol.40, pp.6, 2010, https://doi.org/10.1007/s10800-009-0046-5
  6. Electrokinetic restoration of saline agricultural lands vol.40, pp.6, 2010, https://doi.org/10.1007/s10800-010-0072-3