DOI QR코드

DOI QR Code

Modeling the Fate of Priority Pharmaceuticals in Korea in a Conventional Sewage Treatment Plant

  • Kim, Hyo-Jung (Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University) ;
  • Lee, Hyun-Jeoung (Department of Environmental Engineering, Ajou University) ;
  • Lee, Dong-Soo (Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University) ;
  • Kwon, Jung-Hwan (Department of Environmental Engineering, Ajou University)
  • 발행 : 2009.09.30

초록

Understanding the environmental fate of human and animal pharmaceuticals and their risk assessment are of great importance due to their growing environmental concerns. Although there are many potential pathways for them to reach the environment, effluents from sewage treatment plants (STPs) are recognized as major point sources. In this study, the removal efficiencies of the 43 selected priority pharmaceuticals in a conventional STP were evaluated using two simple models: an equilibrium partitioning model (EPM) and STPWIN$^{TM}$ program developed by US EPA. It was expected that many pharmaceuticals are not likely to be removed by conventional activated sludge processes because of their relatively low sorption potential to suspended sludge and low biodegradability. Only a few pharmaceuticals were predicted to be easily removed by sorption or biodegradation, and hence a conventional STP may not protect the environment from the release of unwanted pharmaceuticals. However, the prediction made in this study strongly relies on sorption coefficient to suspended sludge and biodegradation half-lives, which may vary significantly depending on models. Removal efficiencies predicted using the EPM were typically higher than those predicted by STPWIN for many hydrophilic pharmaceuticals due to the difference in prediction method for sorption coefficients. Comparison with experimental organic carbon-water partition coefficients ($K_{ocs}) revealed that log KOW-based estimation used in STPWIN is likely to underestimate sorption coefficients, thus resulting low removal efficiency by sorption. Predicted values by the EPM were consistent with limited experimental data although this model does not include biodegradation processes, implying that this simple model can be very useful with reliable Koc values. Because there are not many experimental data available for priority pharmaceuticals to evaluate the model performance, it should be important to obtain reliable experimental data including sorption coefficients and biodegradation rate constants for the prediction of the fate of the selected pharmaceuticals.

키워드

참고문헌

  1. Boxall, A. B. A., Kolpin, D. W., Halling-Sørensen, B., and Tolls, J., “Are veterinary medicines causing environmental risks?,” Environ. Sci. Technol., 37, 286-294A (2003). https://doi.org/10.1021/es032519b
  2. Cabello, F. C., “Heavy use of prophylactic antibiotics in aquaculture: a growing problem of human and animal health and for the environment,” Environ. Microbiol., 8, 1137-1144 (2006). https://doi.org/10.1111/j.1462-2920.2006.01054.x
  3. Oaks, J. L., Gilbert, M., Virani, M. Z., Watson, R. T., Meteyer, C. U., Rideout, B. A., Shivaprasad, H. L., Ahmed, S., Chaudhry, M. J., Arshad, M., Mahmood, S., Ali, A., and Khan, A. A., “Diclofenac residues as the cause of vulture population decline in Pakistan,” Nature, 427, 630-633 (2004). https://doi.org/10.1038/nature02317
  4. Oh, S. J., Park, J., Lee, M. J., Park, S. Y., Lee J.-H., and Choi, K., “Ecological hazard assessment of major veterinary benzimidazoles: acute and chronic toxicities to aquatic microbes and invertebrates,” Environ. Toxicol. Chem, 25, 2221-2226 (2006). https://doi.org/10.1897/05-493R.1
  5. Agersø, Y., Wulff, G., Vaclavik, E., Halling-Sørensen, B., and Jensen, L. B., “Effect of tetracycline residues in pig manure slurry on tetracycline-resistant bacteria and resistance gene tet(M) in soil microcosms,” Environ. Int., 32, 876-82 (2006). https://doi.org/10.1016/j.envint.2006.05.008
  6. Ternes, T. A., “Occurence of drugs in German sewage treatment plants and rivers,” Water Res., 32, 3245-3260 (1998). https://doi.org/10.1016/S0043-1354(98)00099-2
  7. Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., and Buxton, H. T., “Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance,” Environ. Sci. Technol., 36, 1202-1211 (2002). https://doi.org/10.1021/es011055j
  8. Han, G. H., Hur, H. G., and Kim, S. D., “Ecotoxicological risk of pharmaceuticals from wastewater treatment plants in Korea: occurrence and toxicity to Daphnia magna,” Environ. Toxicol. Chem., 25, 265-271 (2006). https://doi.org/10.1897/05-193R.1
  9. Park, J., An Approach for Developing Aquatic Environmental Risk Assessment Frameworks for Pharmaceuticals in Korea, KEI Research Report RE-05 (2006).
  10. Boxall, A. B. A., Fogg, L. A., Kay, P., Blackwell, P. A., Pemberton, E. J., and Croxford, A., “Prioritisation of veterinary medicines in the UK environment,” Toxicol. Lett, 142, 207-218 (2003). https://doi.org/10.1016/S0378-4274(03)00067-5
  11. Lee, Y.-J., Lee, S.-E., Lee, D. S., Kim, Y.-H., “Risk assessment of human antibiotics in Korean aquatic environment,” Environ. Toxicol. Pharmacol., 26, 216-221 (2008). https://doi.org/10.1016/j.etap.2008.03.014
  12. Petersen, A., Andersen, J. S., Kaewmak, T., Somsiri, T., and Dalsgaard, A., “Impact of integrated fish farming on antimicrobial resistance in a pond environment,” Appl. Environ. Microbiol., 68, 6036-6042 (2002). https://doi.org/10.1128/AEM.68.12.6036-6042.2002
  13. Hirsch, R., Ternes, T., Haberer, K., and Kratz, K. L., “Occurrence of antibiotics in the aquatic environment,” Sci. Total Environ., 225, 109-118 (1999). https://doi.org/10.1016/S0048-9697(98)00337-4
  14. Ministry of Environment, http://me.go. kr/kor/notice/notice_ 02_01.jsp?id=notice_02&mode=view&idx=168330 (2009).
  15. Boxall, A. B. A., Fogg, L. A., Blackwell, P. A., Kay, P., Pemberton, E. J., and Croxford, A., “Veterinary medicines in the environment,” Rev. Environ. Contam. Toxicol., 180, 1-91 (2004). https://doi.org/10.1007/0-387-21729-0_1
  16. Capleton, A. C., Courage, C., Rumsby, P., Holmes, P., Stutt, E., Boxall, A. B. A., and Levy, L. S., “Prioritising veterinary medicines according to their potential indirect human exposure and toxicity profile,” Toxicol. Lett., 163, 213-223 (2006). https://doi.org/10.1016/j.toxlet.2005.10.023
  17. Richardson, M. L. and Bowron, J. M., “The fate of pharmaceuticals in the aquatic environment: a review,” J. Pharm. Pharmacol., 37, 1-12 (1985). https://doi.org/10.1111/j.2042-7158.1985.tb04922.x
  18. Heidler, J. and Halden, R. U., “Meta-analysis of mass balances examining chemical fate during wastewater treatment,” Environ. Sci. Technol., 42, 6324-6332 (2008). https://doi.org/10.1021/es703008y
  19. Kim, Y., Jung, J., Kim, M., Park, J., Boxall, A. B. A., and Choi, K., “Prioritizing veterinary pharmaceuticals for aquatic environment in Korea,” Environ. Toxicol. Pharmacol., 26, 167-176 (2008). https://doi.org/10.1016/j.etap.2008.03.006
  20. Kim, M. H., Park, J., Kim, Y. H., and Choi, K., “Prioritizing human use antibiotics for environmental health management and estimating their environmental concentrations in Korean waterway,” Korean J. Environ. Health, 32, 462- 468 (2006).
  21. Lee, K., Yong, D., Yum, J. H., Lim, Y. S., Kim, H. S., Lee, B. K., and Chong, Y., “Emergence of multidrug-resistant Salmonella enterica Serovar Typhi in Korea,” Antimicrob. Agent. Chemotherapy, 48, 4130-4135 (2004). https://doi.org/10.1128/AAC.48.11.4130-4135.2004
  22. Sangster Research Laboratory. LOGKOW©, A databank of evaluated octanol-water partition coefficient (log P), http://logkow.cisti.nrc.ca/logkow/index.jsp. (2009).
  23. Hansch. C., Leo, A., and Hoekman, D., Exploring QSAR: hydrophobic, electronic, and steric constants, ACS Professional Reference (1995).
  24. Stuer-Lauridsen, F., Birkved, M., Hansen, L. P., Holten- Lützhøft, H. C., and , Halling-Sørensen, B., “Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use,” Chemosphere, 40, 783-793, (2000). https://doi.org/10.1016/S0045-6535(99)00453-1
  25. McFarland, J. W., Berger, C. M., Froshauer, S. A., Hayashi S. F., Hecker, S. J., Jaynes, B. H., Jefson, M. R., Kamicker, B. J., Lipinski, C. A., Lundy, K. M., Reese, C. P., and McFarland, C. B. V., “Quantitative structure-activity relationships among macrolide antibacterial agents: in vitro and in vivo potency against Pasteurella multicida,” J. Med. Chem., 40, 1340-1346 (1997). https://doi.org/10.1021/jm960436i
  26. Mottier, M. L., Alvrez, L. I., Pis, M. A., and Lanusse, C. E., “Transtegumental of diffusion of benzimidazole anthelmintics into Moniezia benedeni: correlation with their octanolwater partitioning coefficient,” Exp. Parasitol., 103, 1-7 (2003). https://doi.org/10.1016/S0014-4894(03)00060-2
  27. Takacs-Novak, K., Jozan, M., and Szasz, G., “Lipophilicity of amphoteric molecules expressed by the true partition coefficient,” Int. J. Pharm., 113, 47-55 (1995). https://doi.org/10.1016/0378-5173(94)00176-6
  28. Yamamoto, H., Hayashi, A., Nakamura, Y., and Sekizawa, J., “Fate and partitioning of selected pharmaceuticals on aquatic environment,” Env. Sci., 12, 347-358 (2005).
  29. Boxall, A. B. A., Johnson, P., Smith, E. J., Sinclair, C. J., Stutt, E., and Levy, L. S., “Uptake of Veterinary Medicines from Soils into Plants,” J. Agric. Food Chem., 54, 2288- 2297. (2006). https://doi.org/10.1021/jf053041t
  30. Wightwick, A. and Allinson, G., Compilation of agrochemicals registered for use in Victoria and their physical-chemical properties, Department of Primary Industries, The State of Victoria, Australia (2008).
  31. Carballa, M., Fink, G., Omil, F., Lema, J. M., and Ternes, T., 'Determination of the solid-water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge,' Water Res., 42, 287-295 (2008). https://doi.org/10.1016/j.watres.2007.07.012
  32. Rabølle, M. and Spliid, N. H., “Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil,” Chemosphere, 40, 715-722 (2000). https://doi.org/10.1016/S0045-6535(99)00442-7
  33. Meylan, W. M. and Howard, P. H., “Atom/fragment contribution method for estimating octanol-water partition coefficients,” J. Pharm. Sci., 84, 83-92 (1995). https://doi.org/10.1002/jps.2600840120
  34. Meylan, W. M., Howard, P.H., and Boethling, R. S., “Molecular topology/fragment contribution method for predicting soil sorption coefficients,” Environ. Sci. Tech., 26, 1560- 1567 (1992). https://doi.org/10.1021/es00032a011
  35. Clark, B., Henry, J. G., and Mackay, D., “Fugacity analysis and model of organic chemical fate in a sewage treatment plant,” Environ. Sci. Tech., 29, 1488-1494 (1995). https://doi.org/10.1021/es00006a009
  36. Fent, K., Weston, A. A., and Caminada, D., “Ecotoxicology of human pharmaceuticals,” Aquat. Toxicol., 76, 122-159 (2006). https://doi.org/10.1016/j.aquatox.2005.09.009
  37. Schwarzenbach, R. P., Gschwend, P. M., and Imboden, D.M., Environmental Organic Chemistry, 2nd ed. John Wiley & Sons, Hoboken, NJ, USA (2003).
  38. U.S. Environmental Protection Agency, Estimation Program Interface (EPI) Suite ver. 4.00. U.S. Environmental Protection Agency, Office of Pollution Prevention and Toxic's, Washington, DC, USA (2008).
  39. Seth, R., Webster, E., and Mackay, D., “Continued development of a mass balance model of chemical fate in a sewage treatment plant,” Water Res., 42, 595-604 (2008). https://doi.org/10.1016/j.watres.2007.08.004
  40. Yamamoto, H., Liljestrand, H. M., Shimizu, Y., Morita, M., “Effects of physical-chemical characteristics on the sorption of selected endocrine disruptors by dissolved organic matter surrogates,” Environ. Sci. Technol., 37, 2646-2657 (2003). https://doi.org/10.1021/es026405w
  41. Sabljic, A., “Predictions of the nature and strength of soil sorption of organic pollutants by molecular topology,” J. Agric. Food Chem., 32, 243-246 (1984). https://doi.org/10.1021/jf00122a016
  42. Sabljic, A. “On the prediction of soil sorption coefficients of organic pollutants from molecular structure: application of molecular topology model,” Environ. Sci. Technol., 21, 358-66 (1987). https://doi.org/10.1021/es00158a004
  43. Lin, A.Y., Yu, T., and Lateef, S. K., “Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan,” J. Hazard. Mater. (2009).
  44. Yamamoto, H., Nakamura, Y., Nakamura, Y., Kitani, C., Imari, T., Sekizawa, J., Takao, Y., Yamashita, N., Hirai, N., Oda, S., and Tatarazako, N., “Initial ecological risk assessment of eight selected human pharmaceuticals in Japan,” Environ. Sci., 14, 177-193 (2009).
  45. Khan, S. and Ongerth, J., “Occurrence and Distribution of Pharmaceutical Residualsin Bay Sewage and Sewage Treatment,” Bay Area Clean Water Agency #8012-17 (2005).
  46. Lindberg, R. H., Olofsson, U., Rendahl, P., Johansson, M. I., Tysklind, M., and Andersson, B. A., “Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge,” Environ. Sci. Tech., 40, 1042-1048 (2006). https://doi.org/10.1021/es0516211
  47. Golet, E. M., Xifra, I., Siegrist, H., Alder, A. C., and Giger, W., “Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil,” Environ. Sci. Technol., 37, 3243-3249 (2003). https://doi.org/10.1021/es0264448
  48. Gobel, A., Thomsen, A., McArdell, C. S., Joss, A., and Giger, W., “Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment,” Environ. Sci. Technol., 39, 3981-3989 (2005). https://doi.org/10.1021/es048550a

피인용 문헌

  1. The effect of dairy sewage sludge amendment on repellency and hydraulic conductivity of soil aggregates from two depths of Eutric Cambisol vol.178, pp.2, 2015, https://doi.org/10.1002/jpln.201400231
  2. Sorption of benzimidazole anthelmintics to dissolved organic matter surrogates and sewage sludge vol.80, pp.3, 2009, https://doi.org/10.1016/j.chemosphere.2010.04.029
  3. Sorption of biocides, triazine and phenylurea herbicides, and UV-filters onto secondary sludge vol.45, pp.12, 2009, https://doi.org/10.1016/j.watres.2011.04.014
  4. Enzymatic and microbial transformation assays for the evaluation of the environmental fate of diclofenac and its metabolites vol.87, pp.8, 2009, https://doi.org/10.1016/j.chemosphere.2012.02.018