DOI QR코드

DOI QR Code

Synthesis and Oxygen Reduction Reaction Characteristics of Multi-Walled Carbon Nanotubes Supported PtxM(1-x) (M = Co, Cu, Ni) Alloy Catalysts for Polymer Electrolyte Membrane Fuel Cell

다중벽 탄소 나노 튜브에 담지한 PtxM(1-x)(M = Co, Cu, Ni) 합금촉매의 제조 및 고분자 전해질 연료전지에서 산소환원 특성

  • Jung, Dong-Won (School of Materials Science and Engineering, Ulsan University) ;
  • Park, Soon (School of Materials Science and Engineering, Ulsan University) ;
  • Ahn, Chi-Yeong (School of Chemical engineering & Bioengineering, Ulsan University) ;
  • Choi, Seong-Ho (School of Chemical engineering & Bioengineering, Ulsan University) ;
  • Kim, Jun-Bom (School of Chemical engineering & Bioengineering, Ulsan University)
  • 정동원 (울산대학교 첨단소재공학부) ;
  • 박순 (울산대학교 첨단소재공학부) ;
  • 안치영 (울산대학교 생명화학공학부) ;
  • 최성호 (울산대학교 생명화학공학부) ;
  • 김준범 (울산대학교 생명화학공학부)
  • Published : 2009.12.27

Abstract

The electrocatalytic characteristics of oxygen reduction reaction of the $PtxM_{(1-x)}$ (M = Co, Cu, Ni) supported on multi-walled carbon nanotubes (MWNTs) have been evaluated in a Polymer Electrolyte Membrane Fuel Cell (PEMFC). The $Pt_xM_{(1-x)}$/MWNTs catalysts with a Pt : M atomic ratio of about 3 : 1 were synthesized and applied to the cathode of PEMFC. The crystalline structure and morphology images of the $Pt_xM_{(1-x)}$ particles were characterized by X-ray diffraction and transmission electron microscopy, respectively. The results showed that the crystalline structure of the Pt alloy particles in Pt/MWNTs and $Pt_xM_{(1-x)}$/MWNTs catalysts are seen as FCC, and synthesized $Pt_xM_{(1-x)}$ crystals have lattice parameters smaller than the pure Pt crystal. According to the electrochemical surface area (ESA) calculated with cyclic voltammetry analysis, $Pt_{0.77}Co_{0.23}$/MWNTs catalyst has higher ESA than the other catalysts. The evaluation of a unit cell test using Pt/MWNTs or $Pt_xM_{(1-x)}$/MWNTs as the cathode catalysts demonstrated higher cell performance than did a commercial Pt/C catalyst. Among the MWNTs-supported Pt and $Pt_xM_{(1-x)}$ (M = Co, Cu, Ni) catalysts, the $Pt_{0.77}Co_{0.23}$/MWNTs shows the highest performance with the cathode catalyst of PEMFC because they had the largest ESA.

Keywords

References

  1. F. Lufrano, E. Passalacqua, G. Squadrito, A. Patti, L. Giorgi, J. Appl. Electrochem., 29, 445 (1999) https://doi.org/10.1023/A:1026419102310
  2. S. Koh, C. Yu, P. Mani, R. Srivastava, P. Strasser, J. Power Sources, 172, 50 (2008) https://doi.org/10.1016/j.jpowsour.2007.01.002
  3. E. Antolini, J. R. C. Salgado, E. R. Gonzalez, J. Power Sources, 160, 957 (2006) https://doi.org/10.1016/j.jpowsour.2006.03.006
  4. Z. D. Wei, Y. C. Feng, L. Li, M. J. Liao, Y. Fu, C. X. Sun, Z. G. Shao, P. K. Shen, J. Power Sources, 180, 84 (2008) https://doi.org/10.1016/j.jpowsour.2008.01.086
  5. L. Xiong, A. M. Kannan, A. Manthiram, Electrochem. Commun., 4, 898 (2002) https://doi.org/10.1016/S1388-2481(02)00485-X
  6. D. W. Jung, S. Park, J. T. Kang and J. B. Kim, Kor. J. Mater. Res. 19(5), 233 (2009) https://doi.org/10.3740/MRSK.2009.19.5.233
  7. A. L. Dicks, J. Power Sources, 156, 128 (2006) https://doi.org/10.1016/j.jpowsour.2006.02.054
  8. Y. Shao, J. Wang, R. Kou, M. Engelhard, J. Liu, Y.Wang, Y. Lin, Electrochim Acta, 54, 3109 (2009) https://doi.org/10.1016/j.electacta.2008.12.001
  9. S. Zhang, X. Yuan, H. Wang, W. Mérida, H. Zhu, J. Shen, S. Wu, J. Zhang, Int. J. Hydrogen Energy, 34, 388 (2009) https://doi.org/10.1016/j.ijhydene.2008.10.012
  10. Y. Shao, G. Yin, Y. Gao, J. Power Sources, 171, 558 (2007) https://doi.org/10.1016/j.jpowsour.2007.07.004
  11. Y. Shao, G. Yin, and Y. Gao, J. Power Sources, 171, 558 (2007) https://doi.org/10.1016/j.jpowsour.2007.07.004
  12. P. J. Ferreira, G. L. LaO, Y. S. Horn, D. Morgan, R. Makharia, S. Kocha, and H. A. Gasteiger, J. Electrochem. Soc., 152, A2256 (2005) https://doi.org/10.1149/1.2050347
  13. A. V. Virkar and Y. Zhou, J. Electrochem. Soc. 154, B540 (2007) https://doi.org/10.1149/1.2722563
  14. X. Yu, S. Ye, J. Power Sources, 172, 145 (2007) https://doi.org/10.1016/j.jpowsour.2007.07.048
  15. S. Iijima, Nature, 354, 56 (1991) https://doi.org/10.1038/354056a0
  16. A. L. M. Reddya, N. Rajalakshmib, S. Ramaprabhu, Carbon, 46, 2 (2008)
  17. L. Li, Y. Xing, J. Power Sources, 178, 75 (2008) https://doi.org/10.1016/j.jpowsour.2007.12.002
  18. J. J. Niu, J. N. Wang, Electrochim. Acta, 53, 8058 (2008) https://doi.org/10.1016/j.electacta.2008.06.026
  19. Y. Shi, R. Yang, P. K. Yuet, Carbon, 47, 1146 (2009) https://doi.org/10.1016/j.carbon.2008.12.049
  20. P. Queipo, A. G. Nasibulin, D. Gonzalez, U. Tapper, H. Jiang, T. Tsuneta, K. Grigoras., J.A. Duenas., E.I. Kauppinen, Carbon, 44, 1581 (2006) https://doi.org/10.1016/j.carbon.2006.01.028
  21. S. Xie, W. Li, Z. Pan, B. Chang, L. Sun, J. Phys. Chem. Solids, 61, 1153 (2000) https://doi.org/10.1016/S0022-3697(99)00376-5
  22. T. Belin, F. Epron, Mater. Sci. Eng. B, 119, 105 (2005) https://doi.org/10.1016/j.mseb.2005.02.046
  23. C. Yang, X. Hu, D. Wang, C. Dai, L. Zhang, H. Jin, S. Agathopoulos, J. Power Sources, 106, 187 (2006) https://doi.org/10.1016/j.jpowsour.2006.05.015
  24. X. Wang, W. Li, Z. Chen, M. Waje, Y. Yan, J. Power Sources, 158, 154 (2006) https://doi.org/10.1016/j.jpowsour.2005.09.039
  25. T. D. Fornes, J. W. Baur, Y. Sabba, E. L. Thomas, Polymer, 47, 1704 (2006) https://doi.org/10.1016/j.polymer.2006.01.003
  26. Z. Liu, L. M. Gan, L. Hong, W. X. Chen, and J. Y. Lee, J. Power Sources, 139, 73 (2005) https://doi.org/10.1016/j.jpowsour.2004.07.012

Cited by

  1. Durability of Polymer Electrolyte Membrane Fuel Cell with Pt/CNTs Catalysts in Cell Reversal Conditions by Hydrogen Starvation vol.11, pp.6, 2011, https://doi.org/10.1002/fuce.201100034