DOI QR코드

DOI QR Code

Fabrication and Characterization of Porous Hydroxyapatite Scaffolds

  • Kim, Min-Sung (Department of Biomedical Engineering Engineering and Materials, School of Medicine, Soonchunhyang University) ;
  • Park , Ih-Ho (Department of Biomedical Engineering Engineering and Materials, School of Medicine, Soonchunhyang University) ;
  • Lee, Byong-Taek (Department of Biomedical Engineering Engineering and Materials, School of Medicine, Soonchunhyang University)
  • Published : 2009.12.27

Abstract

Using a polyurethane foam replica method, porous hydroxyapatite scaffolds (PHS) were fabricated using conventional and microwave sintering techniques. The microstructure and material properties of the PHS, such as pore size, grain size, relative density and compressive strength, were investigated at different sintering temperatures and holding times to determine the optimal sintering conditions. There were interconnected pores whose sizes ranged between about 300 ${\mu}m$ and 700 ${\mu}m$. At a conventional sintering temperature of 1100$^{\circ}C$, the scaffold had a porous microstructure, which became denser and saw the occurrence of grain growth when the temperature was increased up to 1300$^{\circ}C$. In the case of microwave sintering, even at low sintering temperature and short holding time the microstructure was much denser and had smaller grains. As the holding time of the microwave sintering was increased, higher densification was observed and also the relative density and compressive strength increased. The compressive strength values of PHS were 2.3MPa and 1.8MPa when conventional and microwave sintering was applied at 1300$^{\circ}C$, respectively.

Keywords

References

  1. Y. Yan, X. Zhuo, Y. Hu, Mater. Lett., 57, 2623 (2003) https://doi.org/10.1016/S0167-577X(02)01339-3
  2. V. Sikavitsas, G. Bancroft, Mikos, J. Biomed. Mater. Res., 62, 136 (2002) https://doi.org/10.1002/jbm.10150
  3. G. T. Kose, H. Kenar, Biomaterials, 24, 1949 (2003) https://doi.org/10.1016/S0142-9612(02)00613-0
  4. J. P. Vacanti, C. A. Vacanti, R. Langer, Principles of Tissue Engineering, p 1, Academic Press, San Diego (1997)
  5. S. L. Ishaug, G. M. Crane, M. J. Miller, A. W. Yasko, M. J. Yazemski, A. G. Mikos, J. Biomed. Mater. Res., 36, 17 (1997) https://doi.org/10.1002/(SICI)1097-4636(199707)36:1<17::AID-JBM3>3.0.CO;2-O
  6. H. Yoshimoto, Y. M. Shin, H. Terai, J. P. Vacanti, Biomaterials, 24, 2077 (2003) https://doi.org/10.1016/S0142-9612(02)00635-X
  7. Y. Hu, D. W. Grainger, S. R. Winn, J. O. Hollinger, J. Biomed. Mater. Res., 59, 563 (2001) https://doi.org/10.1002/jbm.1269
  8. T. Nezu, F. M. Winnik, Biomaterials, 21, 415 (2000) https://doi.org/10.1016/S0142-9612(99)00204-5
  9. L. Huang, K. Nagapaudi, R. P. Apkarian, E. L. Chaikof, J. Biomater. Sci. Polym. Ed., 12, 979 (2001) https://doi.org/10.1163/156856201753252516
  10. A. S. Goldstein, G. Zhu, G. E. Morris, R. K. Meslenyi, A. G. Mikos, Tissue Eng., 5, 421 (1999) https://doi.org/10.1089/ten.1999.5.421
  11. K. De Groot, Biomaterials, 1, 47 (1980) https://doi.org/10.1016/0142-9612(80)90059-9
  12. M. Jarcho, Clin. Orthop. Rel. Res., 157, 259 (1981)
  13. C. J. Damien and J. R. Parsons, J. Appl. Biomaterials, 2, 187 (1990) https://doi.org/10.1002/jab.770020307
  14. M. S. Kim, J. J. Ryu, Y. M. Sung, Kor. J. Mater. Res., 19(2), 85 (2009) https://doi.org/10.3740/MRSK.2009.19.2.085
  15. H. W. Kim, J. C. Knowles, H. E. Kim, Biomaterials, 25, 1279 (2004) https://doi.org/10.1016/j.biomaterials.2003.07.003
  16. W. H. Sutton, Am. Ceram. Soc. Bull., 68, 376 (1989) https://doi.org/10.1111/j.1151-2916.1985.tb10146.x
  17. M. A. Willert Porada, MRS Bull., 18, 51 (1993)
  18. A. C. Metaxas, J. G. P. Binner, Advanced Ceramic Processing Technology, p. 285, ed. J.G.P. Binner, Noyes Publications, New Jersey, USA (1990)
  19. S. Nath, N. Shnha, B. Basu, Ceram. Inter., 34, 1509 (2008) https://doi.org/10.1016/j.ceramint.2007.04.021
  20. X. Wang, H. Fan, Y. Xiao, X. Zhang, Mater. Lett., 60, 455 (2006) https://doi.org/10.1016/j.matlet.2005.09.010
  21. E. A. Moreira, M. D. M. Innocentini and J. R. Coury, J. Euro. Ceram. Soc., 24, 3209 (2004) https://doi.org/10.1016/j.jeurceramsoc.2003.11.014
  22. J. K. Han, H. Y. Song, F. Saito, B. T. Lee, Mater. Chem. Phy., 99, 235 (2006) https://doi.org/10.1016/j.matchemphys.2005.10.017
  23. L. Cerroni, R. Filocamo, M. Fabbri, C. Piconi, S. Caropreso, S.G. Condo, Biomolecular Engineering, 19, 117 (2002) https://doi.org/10.1016/S1389-0344(02)00027-8
  24. Y. Zhang, M. J. Zhang, Biomed. Mater. Res., 61, 1 (2002) https://doi.org/10.1002/jbm.10176

Cited by

  1. The Production of Porous Hydroxyapatite Scaffolds with Graded Porosity by Sequential Freeze-Casting vol.10, pp.4, 2017, https://doi.org/10.3390/ma10040367