DOI QR코드

DOI QR Code

Total-internal-reflection Holographic Photo-lithography by Using Incoherent Light

비가간섭광을 이용한 내부전반사 홀로그래픽 리소그라피

  • Published : 2009.12.25

Abstract

Recently, with increasing demand for flat-panel display product, methods for large area patterning are required. TIR (total internal reflection) holographic photo-lithography isstudied as one of the methods of large area lithography. In conventional TIR holography, light sources for hologram recording and image reconstruction are coherent beams such as laser beams. If the image is reconstructed with an incoherent light source such a UV lamp, the image noise from the coherence of light will be reduced and the UV lamp will be a better light source for large area exposure. We analyzed the effect of spectral bandwidth and angular bandwidth of the light source in image reconstruction and verified image blurring with experiments. For large area patterning which has micro-scale line width, it is expected that TIR holographic photo lithography by UV lamp will become a low-noise and low-priced technique.

최근 디스플레이 기기의 수요가 증대되면서 대면적 노광에 대한 요구가 증대되고 있는데, 내부전반사(total internal reflection: TIR)홀로그래픽 리소그라피는 대면적 노광을 위한 효과적인 방법으로 연구가 진행되고 있다. TIR 홀로그래피에서는 일반적으로 레이저를 이용하여 영상을 기록하고 재생한다. 그러나 자외선 램프와 같은 비가간섭광을 이용하여 재생한다면, 가간섭성에 의해 나타나는 영상잡음을 줄일 수 있고, 대면적 노광에도 보다 용이할 것이다. TIR 홀로그램의 재생을 위하여 자외선 램프를 이용할 때, 램프의 유한한 선폭과 확산각이 재생 영상에 미치는 영향을 분석하고, 재생패턴에 나타나는 선폭 확대 결과를 실험을 통하여 검증하였다. ${\mu}m$ 규모의 선폭을 갖는 대면적 패턴을 TIR 홀로그램으로부터 얻기 위한 재생 광원으로, 가간섭성 광원인 레이저 대신 저잡음성과 경제성을 갖춘 일반적인 자외선 램프의 사용이 가능할 것으로 기대된다.

Keywords

References

  1. Y. Chen, Y. Shroff, and W. G. Oldham, “Modeling and control of nanomirrors for EUV maskless lithography,” in Proc. Technical Proc. Int. Conf. Modeling and Simulation of Microsystems (San Diego, USA, Mar. 2000), pp. 602-604
  2. M. J. Madou, Fundamentals of Microfabrication the Science of Miniaturization, 2nd ed. (CRC Press, FL, USA, 2002), pp. 22-28
  3. N. Matsuzuka and O. Tabata, “Algorithm for analyzing optimal mask movement pattern in moving mask deep x-ray lithography,” in Proc. 2002 International Symposium on Micromechatronics and Human Science (Nagoya, Japan, Oct. 2002), pp. 159-164
  4. D. C. O'Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics Design, Fabrication, and Test (SPIE Press, Washington, USA, 2004), pp. 149-154
  5. K. Jain, M. Zemel, and M. Klosner, “Large-area highresolution lithography and photoablation systems for microelectronics and optoelectronics fabrication,” Proc. of IEEE 90, 1681-1688 (2002) https://doi.org/10.1109/JPROC.2002.803662
  6. J.-S. Lee, W.-J. Park, J. Lee, S. H. Song, S. Lee, and O. S. Kim, “Image stitching and seamless holographic photolithography for large-area patterning,” Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 20, 23-28 (2009) https://doi.org/10.3807/HKH.2009.20.1.023
  7. K. Stetson, “Holography with totally internally reflected light,” Appl. Phys. Lett. 11, 225-226 (1967) https://doi.org/10.1063/1.1755109
  8. E. B. Champagne and N. G. Massey, “Resolution in holography,” Appl. Opt. 8, 1879-1885 (1969) https://doi.org/10.1364/AO.8.001879
  9. R. Dandliker and J. Brook, “Holographic photolithography for submicron VLSI structure,” in Proc. Holographic Systems, Components and Applications, Second International Conference (Bath, UK, Sept. 1989), pp. 127-132
  10. F. Clube, S. Gray, D. Struchen, J.-C. Tisserand, S. Malfoy, and Y. Darbellay, “Holographic microlithography,” Opt. Eng. 34 2724-2730 (1995) https://doi.org/10.1117/12.205673
  11. W. Park, J. S. Lee, S. H. Song, S. Lee, and T. Kim, “TIR holographic lithography using surface relief hologram mask,” Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 20, 175-181 (2009) https://doi.org/10.3807/HKH.2009.20.3.175
  12. P. Hariharan, Optical Holography Principles, Techniques, and Applications, 2nd ed. (Cambridge University Press, New York, USA, 1996), pp. 25-29
  13. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer Series in Optical Sciences, New York, USA, 2000), pp. 35-38