DOI QR코드

DOI QR Code

Budesonide Microemulsions for Enhancing Solubility and Dissolution Rate

  • Piao, Hong-Mei (College of Pharmacy and Research Institute for Pharmaceutical Sciences, Seoul National University) ;
  • Cho, Hyun-Jong (College of Pharmacy and Research Institute for Pharmaceutical Sciences, Seoul National University) ;
  • Oh, Eui-Chaul (STH Pharm Inc) ;
  • Chung, Suk-Jae (College of Pharmacy and Research Institute for Pharmaceutical Sciences, Seoul National University) ;
  • Shim, Chang-Koo (College of Pharmacy and Research Institute for Pharmaceutical Sciences, Seoul National University) ;
  • Kim, Dae-Duk (College of Pharmacy and Research Institute for Pharmaceutical Sciences, Seoul National University)
  • 발행 : 2009.12.20

초록

Budesonide belongs to Class II in the Biopharmaceutics Classification System (BCS) for its high permeability and poor aqueous solubility. The purpose of this study was to improve the solubility and dissolution rate of budesonide using an o/w microemulsion system in order to develop a nasal formulation. Based on the results of the solubility study and pseudo ternary phase diagrams, microemulsions of about 80 nm in mean diameter were formulated using isopropyl myristate and Labrasol$^{(R)}$ as an oil phase and a surfactant, respectively. Solubility of budesonide in the microemulsions increased up to 6.50 mg/mL, which is high enough for a nasal formulation. In vitro release profiles of budesonide significantly increased from the microemulsions compared to that of the budesonide powder. These results suggest that the microemulsions of budesonide could further be developed into a clinically useful nasal formulation.

키워드

참고문헌

  1. S. Divya, S. Elizabeth and K. Deepak, Allergic Rhinitis, Clin. Pediatr., 46, 401-407 (2007). https://doi.org/10.1177/0009922806298703
  2. H.K. John, Allergic rhinitis - Current pharmacotherapy, Otolaryngol. Clin. N. Am., 41, 347-358 (2008). https://doi.org/10.1016/j.otc.2007.11.014
  3. C. LaForce and N.C. Raleigh, Use of nasal steroids in managing allergic rhinitis, J. Allergy Clin. Immunol., 103, S388-394 (1999). https://doi.org/10.1016/S0091-6749(99)70218-6
  4. H. Derendorf and E.O. Meltzer, Molecular and clinical pharmacology of intranasal corticosteroids: clinical and therapeutic implications, Allergy, 63, 1292-1300 (2008). https://doi.org/10.1111/j.1398-9995.2008.01750.x
  5. K. Deventer, P. Mikulcikova, H. Van Hoecke, P. Van Eenoo and F.T. Delbeke, Detection of budesonide in human urine after inhalation by liquid chromatography–mass spectrometry, J. Pharm. Biomed. Anal., 40, 423-428 (2006). https://doi.org/10.1016/j.jpba.2005.06.038
  6. S. Edsbacker, P. Andersson, C. Lindberg, A. Ryrfeldt and A. Thalen, Metabolic acetal splitting of budesonide. A novel inactivation pathway for topical glucocorticoids, Drug Metab. Dispos., 15, 412-417 (1987).
  7. J.S. Stanley and C. Denver, Pharmacokinetics of intranasal corticosteroids, J. Allergy Clin. Immunol., 108, S26-31 (2001). https://doi.org/10.1067/mai.2001.115563
  8. A.H. Anwar, Intranasal drug delivery, Adv. Drug Deliv. Rev., 129, 39-49 (1998).
  9. T. Selcan, O. Erte and O. Yekta, Nasal route and drug delivery systems, Pharm. World Sci., 26, 137-142 (2004). https://doi.org/10.1023/B:PHAR.0000026823.82950.ff
  10. M.I. Ugwoke, R.U. Agu, N. Verbeke and R. Kinget, Nasal mucoadhesive drug delivery: background, applications, trends and future perspectives, Adv. Drug Deliv. Rev., 57, 1640-1665 (2005). https://doi.org/10.1016/j.addr.2005.07.009
  11. M.A. Lopez-Quintela, C. Tojo, M.C. Blanco, L. Garcia Rio and J.R. Leis, Microemulsion dynamics and reactions in microemulsions, Curr. Opin. Colloid Interface Sci., 9, 264-278 (2004). https://doi.org/10.1016/j.cocis.2004.05.029
  12. A. Morgan, G. Lennart and W. Per, Nasal treatment with a microemulsion reduces allergenchallenge-induced symptoms and signs of allergic rhinitis, Acta Otolaryngol., 128, 666-669 (2008). https://doi.org/10.1080/00016480701642197
  13. Z. Hu, R. Tawa, T. Konishi, N. Shibata and K. Takada, A novel emulsifier, labrasol, enhances gastrointestinal absorption of gentamicin, Life Sci., 69, 2899–2910 (2001).
  14. N. Chidambaram and D.J. Burgess, A novel in vitro release method for submicron sized dispersed systems, AAPS Pharm. Sci., 1, E11 (1998). https://doi.org/10.1208/ps010311
  15. L. Djekic and M. Primorac, The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides, Int. J. Pharm., 352, 231-239 (2008). https://doi.org/10.1016/j.ijpharm.2007.10.041
  16. K. Danjo, F. Higuchi and A. Otsuka, Release of lidocaine from polymer film dosage forms, Chem. Pharm. Bull., 43, 1759-1763 (1995). https://doi.org/10.1248/cpb.43.1759
  17. T. Furubayashi, D. Inoue, A. Kamaguchi, Y. Higashi and T. Sakane, Influence of formulation viscosity on drug absorption following nasal application in rats, Drug Metab. Pharmacokinet., 22, 206-211 (2007). https://doi.org/10.2133/dmpk.22.206