DOI QR코드

DOI QR Code

Mineral Imbalance: Bone Decalcification and Soft Tissue Calcification

무기질 불균형: 골 탈석회화와 연조직 석회화

  • Jeong, Dae-Won (Dept. of Microbiology, Laboratory of Metabolic Disease Control for Bone, College of Medicine, Yeungnam University) ;
  • Lim, Hyun-Sook (Dept. of Public Health Administration, Hanyang Women’s College) ;
  • Kang, Young-Hee (Dept. of Food and Nutrition and Korean Institute of Nutrition, Hallym University)
  • 정대원 (영남대학교 의과대학 미생물학교실 골 대사성 질환제어 연구실) ;
  • 임현숙 (한양여자대학 보건행정과) ;
  • 강영희 (한림대학교 식품영양학과)
  • Published : 2009.12.31

Abstract

Based on the soft and rigid extents, tissues are mainly divided into two groups in mammals, soft tissues including heart, lung, kidney and brain, and hard tissues including tendon, cartilage, teeth and bone. Among various tissues, bone, a dynamic rigid organ, is continuously remodeled by the opposing functional activity between bone formation by osteoblasts and bone destruction by osteoclasts. Bone protects the soft tissues and provides mineral reservoirs, which can supply the mineral needs of other soft tissues to normally maintain cellular function. While calcification in bone is an important action to fundamentally support the body and protect the soft tissues, calcification in soft tissues, including the heart, aorta, kidney, lung and spleen, results in severe organ damages, eventually causing sudden death. A growing body of evidence indicates that the osteoporotic patient who are aging, post-menopausal, diabetes and chronic kidney disease simultaneously represent a high clinical incidence of soft tissue calcification, illustrating a link between soft tissue calcification and bone decalcification (osteoporosis). This study will review what is currently known about the connection between bone decalcification and soft tissue calcification.

여러 단백질과 다양한 무기질(칼슘 등)을 함유한 단단한 기관인 골은 정상적으로 다른 연조직 세포로 무기질을 공급하는 역할을 수행하지만, 비타민 결핍, 노화, 폐경기 및 대사성 질환 등으로 인해서 골다공증이 유발되고 동시에 다양한 연조직(심장, 대동맥, 신장, 허파, 췌장 등)의 석회화가 빈번히 유도된다. 같은 중간엽 줄기세포로부터 유래되는 연조직을 구성하는 세포와 조골세포 사이에서는 상호 횡간의 분화가 될 수 있는 여지가 있어, 연조직 세포는 칼슘 축적으로 골을 형성하는 조골세포와 유사한 세포로 분화될 수 있다. 연조직을 이루는 다양한 연조직 장기의 칼슘 축적으로 인한 석회화는 치명적인 장기손상으로 생명을 위협할 수 있으므로 적극적인 예방과 치료가 중요할 것이다. 골다공증과 연조직 석회화는 상호 밀접한 연계성이 있어 한 가지의 질병이 진행되면 다른 질병이 연속적으로 발병할 우려가 있으므로 초기 질병에 대한 적극적인 치료가 필요하다. 향후 초고속고령화 사회 진입으로 이의 두 질환의 급격한 증가가 예상되므로, vitamin K와 D를 비롯한 다양한 무기질을 균형적으로 조절할 수 있는 식습관과 다량의 항산화제를 함유한 음식물 섭취로 이의 질환을 예방할 수 있을 것이다.

Keywords

References

  1. Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y. 2006. Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 24: 33-63 https://doi.org/10.1146/annurev.immunol.24.021605.090646
  2. Teitelbaum SL. 2000. Bone resorption by osteoclasts. Science 289: 1504-1508 https://doi.org/10.1126/science.289.5484.1504
  3. Raisz LG. 1999. Physiology and pathophysiology of bone remodeling. Clin Chem 45: 1353-1358
  4. Hofbauer LC, Brueck CC, Shanahan CM, Schoppet M, Dobnig H. 2007. Vascular calcification and osteoporosis-from clinical observation towards molecular understanding. Osteoporos Int 18: 251-259 https://doi.org/10.1007/s00198-006-0282-z
  5. Kao CF, Chuang CY, Chen CH, Kuo HC. 2008. Human pluripotent stem cells: current status and future perspectives. Chin J Physiol 51: 214-225
  6. Yajima Y, Kawashima S. 2002. Calpain function in the differentiation of mesenchymal stem cells. Biol Chem 383: 757-764 https://doi.org/10.1515/BC.2002.079
  7. Mosekilde L. 2008. Primary hyperparathyroidism and the skeleton. Clin Endocrinol (Oxf) 69: 1-19 https://doi.org/10.1111/j.1365-2265.2007.03162.x
  8. Raggio CL, Boyan BD, Boskey AL. 1986. In vivo hydroxyapatite formation induced by lipids. J Bone Miner Res 1: 409-415 https://doi.org/10.1002/jbmr.5650010505
  9. Shapiro IM, Golub EE, Kakuta S, Hazelgrove J, Havery J, Chance B, Frasca P. 1982. Initiation of endochondral calcification is related to changes in the redox state of hypertrophic chondrocytes. Science 217: 950-952 https://doi.org/10.1126/science.7112108
  10. Vaananen HK, Laitala-Leinonen T. 2008. Osteoclast lineage and function. Arch Biochem Biophys 473: 132-138 https://doi.org/10.1016/j.abb.2008.03.037
  11. Arnett TR. 2008. Extracellular pH regulates bone cell function. J Nutr 138: 415S-418S https://doi.org/10.1093/jn/138.2.415S
  12. Boyle WJ, Simonet WS, Lacey DL. 2003. Osteoclast differentiation and activation. Nature 423: 337-342 https://doi.org/10.1038/nature01658
  13. Teitelbaum SL, Ross FP. 2003. Genetic regulation of osteoclast development and function. Nat Rev Genet 4: 638-649 https://doi.org/10.1038/nrg1122
  14. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. 1999. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 20: 345-357 https://doi.org/10.1210/er.20.3.345
  15. Roodman GD. 1996. Advances in bone biology: the osteoclast. Endocr Rev 17: 308-332
  16. Suda T, Nakamura I, Jimi E, Takahashi N. 1997. Regulation of osteoclast function. J Bone Miner Res 12: 869-879 https://doi.org/10.1359/jbmr.1997.12.6.869
  17. Mundy GR. 2007. Osteoporosis and inflammation. Nutr Rev 65: S147-151 https://doi.org/10.1301/nr.2007.dec.S147-S151
  18. Gartner L, Pearce CJ, Saifuddin A. 2009. The role of the plain radiograph in the characterization of soft tissue tumours. Skeletal Radiol 38: 549-558 https://doi.org/10.1007/s00256-008-0513-9
  19. Schmid K, McSharry WO, Pameijer CH, Binette JP. 1980. Chemical and physicochemical studies on the mineral deposits of the human atherosclerotic aorta. Atherosclerosis 37: 199-210 https://doi.org/10.1016/0021-9150(80)90005-2
  20. Janzen J, Vuong PN. 2001. Arterial calcifications: morphological aspects and their pathological implications. Z Kardiol 90 Suppl 3: 6-11 https://doi.org/10.1007/s003920170044
  21. Schulz E, Arfai K, Liu X, Sayre J, Gilsanz V. 2004. Aortic calcification and the risk of osteoporosis and fractures. J Clin Endocrinol Metab 89: 4246-4253 https://doi.org/10.1210/jc.2003-030964
  22. Persy V, D'Haese P. 2009. Vascular calcification and bone disease: the calcification paradox. Trends Mol Med 15: 405-416 https://doi.org/10.1016/j.molmed.2009.07.001
  23. Fukagawa M, Akizawa T. 2006. Calcium abnormalities of dialysis patients. J Bone Miner Metab 24: 160 https://doi.org/10.1007/s00774-005-0663-y
  24. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G. 1997. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386: 78-81 https://doi.org/10.1038/386078a0
  25. Yoshitake H, Rittling SR, Denhardt DT, Noda M. 1999. Osteopontin-deficient mice are resistant to ovariectomy- induced bone resorption. Proc Natl Acad Sci U S A 96: 8156-8160 https://doi.org/10.1073/pnas.96.14.8156
  26. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI. 1997. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390: 45-51 https://doi.org/10.1038/36285
  27. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS. 1998. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12: 1260-1268 https://doi.org/10.1101/gad.12.9.1260
  28. Price PA, Faus SA, Williamson MK. 2001. Bisphosphonates alendronate and ibandronate inhibit artery calcification at doses comparable to those that inhibit bone resorption. Arterioscler Thromb Vasc Biol 21: 817-824 https://doi.org/10.1161/01.ATV.21.5.817
  29. Callister TQ, Raggi P, Cooil B, Lippolis NJ, Russo DJ. 1998. Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med 339: 1972-1978 https://doi.org/10.1056/NEJM199812313392703
  30. Kim HJ, Chang EJ, Kim HM, Lee SB, Kim HD, Su Kim G, Kim HH. 2006. Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha. Free Radic Biol Med 40: 1483-1493 https://doi.org/10.1016/j.freeradbiomed.2005.10.066
  31. Liberman M, Bassi E, Martinatti MK, Lario FC, Wosniak J Jr, Pomerantzeff PM, Laurindo FR. 2008. Oxidant generation predominates around calcifying foci and enhances progression of aortic valve calcification. Arterioscler Thromb Vasc Biol 28: 463-470 https://doi.org/10.1161/ATVBAHA.107.156745

Cited by

  1. Effects of a Low Calcium Diet and Oxalate Intake on Calcium Deposits in Soft Tissues and Bone Metabolism in Ovariectomized Rats vol.44, pp.2, 2011, https://doi.org/10.4163/kjn.2011.44.2.101