DOI QR코드

DOI QR Code

The Photocatalytic Decomposition of Different Organic Dyes under UV Irradiation with and without H2O2 on Fe-ACF/TiO2 Photocatalysts

  • Zhang, Kan (Department of Advanced Materials & Science Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials & Science Engineering, Hanseo University)
  • Published : 2009.11.30

Abstract

The Fe-ACF/$TiO_2$ composites were prepared by a sol-gel method and were characterized by nitrogen adsorption, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Energy Dispersive X-ray (EDX). The Fe-ACF/$TiO_2$ composites were developed for the decomposition of organic dyes by using a UV lamp. The decomposition effect was investigated under various conditions, such as three selected non-biodegradable organic dyes like Methylene Blue (MB), Methyl Orange (MO), Rhodamine B (Rh.B), and in the presence of Fe and hydrogen peroxide ($H_2O_2$). The photocatalytic activity was derived from possible combination effects, such as (1) adsorption of ACF, (2) generation of electron/hole by $TiO_2$, (3) photo-Fenton reaction of Fe, and (4) oxidation of $Fe^{2+}\;to\;Fe^{3+}\;by\;H_2O_2$.

Keywords

References

  1. U. Pagga and D. Bruan, “Behavior of Dye Stuffs in Aerobic Biodegradation Tests,” Chemosphere., 15 479-84 (1986) https://doi.org/10.1016/0045-6535(86)90542-4
  2. A. Bianco-Prevot, C. Baiocchi, M. C. Brussino, E. Pramauro, P. Savarino, V. Augugliaro, G. Marci, and L. Palmisano, “Photocatalytic Degradation of Acid Blue 80 in Aqueous Solutions Containing $TiO_2Suspensions$,” Environ. Sci. Technol., 35 971-76 (2001) https://doi.org/10.1021/es000162v
  3. B. Neppolian, H. C. Choi, S. Sakthivel, B. Arabindoo, and V. Murugesan, “Solar Light Induced and $TiO_2$ Assisted Degradation of Textile Dye Reactive Blue 4,” Chemosphere., 46 [8] 1173-81 (2002) https://doi.org/10.1016/S0045-6535(01)00284-3
  4. M. Saquib and M. Muneer, “$TiO_2$-mediated Photocatalytic Degradation of a Triphenylmethane Dye (gentian violet), in Aqueous Suspensions,” Dyes Pigments, 56 37-49 (2003) https://doi.org/10.1016/S0143-7208(02)00101-8
  5. B. Zielinska, J. Grzechulska, and A. W. Morawski, “Photocatalytic Decomposition of Textile Dyes on $TiO_2$-Tytanpol A11 and $TiO_2$-Degussa P25,” J. Photochem. Photobiol. A: Chem., 157 65-70 (2003) https://doi.org/10.1016/S1010-6030(03)00094-7
  6. E. Vulliet, J. M. Chovelon, C. Guillard, and J. M. Herrmann, “Factors Influencing the Photocatalytic Degradation of Sulfonylurea Herbicides by $TiO_2$ Aqueous Suspension,” J. Photochem. Photobiol. A: Chem., 159 71-9 (2003) https://doi.org/10.1016/S1010-6030(03)00108-4
  7. P. F. Fu, Y. Luan, and X. G. Dai, “Preparation of Activated Carbon Fibers Supported $TiO_2$ Photocatalyst and Evaluation of its Photocatalytic Reactivity,” J. Mole. Catal. A: Chem., 221 81-8 (2004) https://doi.org/10.1016/j.molcata.2004.06.018
  8. S. Gelover, P. Mondragon, and A. Jimenez, “Titanium Dioxide Sol-Gel Deposited Over Glass and its Application as Photocatalyst for Water Decontamination,” J. Photochem. Photobiol. A: Chem., 165 241-46 (2004) https://doi.org/10.1016/j.jphotochem.2004.03.023
  9. M. L. Chen, C. S Lim, and W. C. Oh, “Photocatalytic Effect for $TiO_2$/ACF Composite Electrochemically Prepared with TNB Electrolyte,” Carbon Letter, 8 177-83 (2007) https://doi.org/10.5714/CL.2007.8.3.177
  10. Y. N. Hou, J. H. Qu, X. Zhao, P. J. Lei, D. J. Wan, and C. P. Huang “Electro-photocatalytic Degradation of Acid Orange II Using a Novel $TiO_2$/ACF Photoanode,” Sci. of the Total Environ., 407 2431-39 (2009) https://doi.org/10.1016/j.scitotenv.2008.12.055
  11. D. Q. Mo and D. Q. Ye, “Surface Study of Composite Photocatalyst Based on Plasma Modified Activated Carbon Fibers with $TiO_2$,” Surf. Coat. Technol., 203 1154-60 (2009) https://doi.org/10.1016/j.surfcoat.2008.10.007
  12. W. C. Oh, F. J. Zhang, M. L. Chen, Y. M. Lee, and W. B. Ko, “Characterization and Relative Photonic Efficiencies of a New Fe-ACF/$TiO_2$ Composite Photocatalysts Designed for Organic Dye Decomposition,” J. Indust. Engin. Chem., 15 190-5 (2009) https://doi.org/10.1016/j.jiec.2008.09.019
  13. W. C. Oh and M. L. Chen, “Electrochemical Preparation of $TiO_2$/ACF Composites With TNB Electrolyte and Their Photocatalytic Effect,” J. Ceram. Process. Res., 9 100-6 (2008)
  14. N. Serpone and D. Lawless, “Spectroscopic, Photoconductivity, and Photocatalytic Studies of $TiO_2$ Colloids: Naked and with the Lattice Doped with $Cr^{3+}$, $Fe^{3+}$, and $V^{5+}$ Cations,” Langmuir., 10 643-52 (1994) https://doi.org/10.1021/la00015a010
  15. T. Sauer, G. C. Neto, H. J. Jose, and R. F. P. M. Moreira, “Kinetics of Photocatalytic Degradation of Reactive Dyes in a $TiO_2$ Slurry Reactor,” J. Photochem. Photobiol. A: Chem., 149 147-54 (2002) https://doi.org/10.1016/S1010-6030(02)00015-1
  16. C. Galindo, P. Jacques, and A. Kalt, “Photochemical and Photocatalytic Degradation of an Indigoid Dye: a Case Study of Acid Blue 74 (AB74),” J. Photochem. Photobiol. A: Chem., 141 47-56 (2001) https://doi.org/10.1016/S1010-6030(01)00435-X
  17. F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, and N. Serpone, “$TiO_2$-assisted Photodegradation of Dye Pollutants II. Adsorption and Degradation Kinetics of Eosin in $TiO_2$ Dispersions under Visible Light Irradiation,” Appl. Catal. B: Environ., 15 147-56 (1998) https://doi.org/10.1016/S0926-3373(97)00043-X
  18. M. A. Hasnat, I. A. Siddiquy, and A. Nuruddin, “Comparative Photocatalytic Studies of Degradation of a Cationic and an Anionic Dye,” Dyes Pigments, 66, 185-8 (2005) https://doi.org/10.1016/j.dyepig.2004.09.020
  19. R. W. Matthews, “Photooxidation of Organic Impurities in Water Using Thin Film of $TiO_2$,” J. Phys. Chem., 91 3328-33 (1987) https://doi.org/10.1021/j100296a044
  20. C. G. Wu, C. C. Chao, and F. T. Kuo, “Enhancement of the Photo Catalytic Performance of $TiO_2$ Catalysts via Transition Metal Modification,” Catal. Today, 97 103-12 (2004) https://doi.org/10.1016/j.cattod.2004.04.055
  21. D. Dvoranova, V. Brezova, M. Mazura, and M. A. Malati, “Investigations of Metal-doped Titanium Dioxide Photocatalysts,” Appl. Catal. B: Environ., 37 91-105 (2002) https://doi.org/10.1016/S0926-3373(01)00335-6
  22. M. A. Barakat, H. Schaeffer, G. Hayes and S. Ismat-Shah, “Photocatalytic Degradation of 2-chlorophenol by Co-doped $TiO_2$ Nanoparticles,” Appl. Catal. B: Environ., 57 23-30 (2004) https://doi.org/10.1016/j.apcatb.2004.10.001
  23. D. Beydoum, H. Tse, R. Amal, G. Low, and S. McEvoy, “Effect of Copper (II) on the Photocatalytic Degradation of Sucrose,” J. Mol. Catal. A: Chem., 177 265-72 (2002) https://doi.org/10.1016/S1381-1169(01)00272-2
  24. P. A. Gay, P. Bercot, and J. Pagetti, “Electrodeposition and Characterisation of $Ag-ZrO_2$ Electroplated Coatings,” Surf. Coat. Technol., 140 147-54 (2001) https://doi.org/10.1016/S0257-8972(01)01043-X
  25. F. Hou, W. Wang, and H. Guo, “Effect of the Dispersibility of $ZrO_2$ Nanoparticles in Ni-$ZrO_2$ Electroplated Nanocomposite Coatings on the Mechanical Properties of Nanocomposite Coatings,” Appl. Surf. Sci., 252 3812-17 (2006) https://doi.org/10.1016/j.apsusc.2005.05.076
  26. Z. Zhang, C. Wang, R. Zakria, and J. Y. Ying, “Role of Particle Size in Nanocrystalline $TiO_2$-based Photocatalysts,” J. Phys. Chem. B., 102 10871-78 (1998) https://doi.org/10.1021/jp982948+
  27. W. F. Yao, H. Wang, X. H. Xu, X. F. Cheng, J. Huang, S. X. Shang, X. N. Yang, and M. Wang, “Photocatalytic Property of Bismuth Titanate $Bi_{12}TiO_{20}$ Crystals,” Appl. Catal. A: Gen., 243 [1] 185-90 (2003) https://doi.org/10.1016/S0926-860X(02)00564-1
  28. J. Feng, R. S. K. Wong, X. Hu, and P. L. Yue, “Discoloration and Mineralization of Orange II by Using $Fe^{3+}$-doped $TiO_2$ and Bentonite Clay-based Fe Nanocatalysts,” Catal. Today, 98 441-46 (2004) https://doi.org/10.1016/j.cattod.2004.08.007
  29. J. A. Navia, J. J. Testab, P. Djedjeianb, J. R. Padron, D. Rodriguez, and M. I. Litter, “Iron-doped Titania Powders Prepared by a Sol-Gel Method: Part II: Photocatalytic Properties,” Appl. Catal. A: Gen., 178 191-203 (1999) https://doi.org/10.1016/S0926-860X(98)00286-5
  30. J. Zhua, W. Zheng, B. Hea, J. Zhang, and M. Anpob, “Characterization of Fe-$TiO_2$ Photocatalysts Synthesized by Hydrothermal Method and their Photocatalytic Reactivity for Photodegradation of XRG Dye Diluted in Water,” J. Mol. Catal. A: Chem., 216 35-43 (2004) https://doi.org/10.1016/j.molcata.2004.01.008
  31. I. Sires, J. A. Garrido, R. M. Rodriguez, E. Brillas, N. Oturan, and M. A. Oturan “Catalytic Behavior of the $Fe^{3+}/Fe^{2+}$ System in the Electro-Fenton Degradation of the Antimicrobial Chlorophene,” Appl. Catal. B: Environ., 72 382-94 (2007) https://doi.org/10.1016/j.apcatb.2006.11.016
  32. Y. K. Masumoto, R. Hamada, K. Yokota, S. Nishiyama, and S. Tsuruya, “Liquid-phase Oxidation of Benzene to Phenol by Vanadium Catalysts in Aqueous Solvent with High Acetic Acid Concentration,” J. Mol. Catal. A., 184 215-22 (2002) https://doi.org/10.1016/S1381-1169(01)00528-3
  33. T. Miyahara, H. Kanzaki, R. Hamada, S. Kuroiwa, S. Nishiyama, and S. Tsuruya, “Liquid-phase Oxidation of Benzene to Phenol by $CuO-Al_2O_3$ Catalysts Prepared by Co-precipitation Method,” J. Mol. Catal. A., 176 141-50 (2001) https://doi.org/10.1016/S1381-1169(01)00242-4
  34. H. Kanzaki, T. Kitamura, R. Hamada, S. Nishiyama and S. Tsuruya, “Activities for Phenol Formation Using Cu Catalysts Supported on $Al_2O_3$ in the Liquid-phase Oxidation of Benzene in Aqueous Solvent with High Acetic Acid Concentration,” J. Mol. Catal. A., 208 203-11 (2004) https://doi.org/10.1016/S1381-1169(03)00516-8
  35. M. Pera-Titus, V. Garcia-Molina, M. A. Ban.os, J. Gimenez, and S. Espluga, “Degradation of Chlorophenols by Means of Advanced Oxidation Processes: a General Review,” Appl. Catal. B: Environ., 47 219-56 (2004) https://doi.org/10.1016/j.apcatb.2003.09.010
  36. N. Quici, M. Morgada, R. Gettar, M. Bolte, and M. Litter, “Photocatalytic Degradation of Citric Acid under Different Conditions: $TiO_2$ Heterogeneous Photocatalysis Against Homogeneous Photolytic Processes Promoted by Fe(III) and $H_2O_2$,” Appl. Catal. B: Environ., 71 117-24 (2007) https://doi.org/10.1016/j.apcatb.2006.09.001
  37. B. Tryba, “Immobilization of $TiO_2$ and Fe-C-$TiO_2$ Photocatalysts on the Cotton Material for Application in a Flow Photocatalytic Reactor for Decomposition of Phenol in Water,” J. Hazar. Mat., 151 623-27 (2008) https://doi.org/10.1016/j.jhazmat.2007.06.034
  38. Y. G. Go, F. J. Zhang, M. L. Chen, and W. C. Oh, “Fabrication of Zn-treated ACF/$TiO_2$ Composites and Their Photocataytic Activity for Degradation of Methylene Blue,” J. Mater. Res., 19 [3] 142-50 (2009) https://doi.org/10.3740/MRSK.2009.19.3.142
  39. F. J. Zhang, M. L. Chen, and W. C. Oh, “Synthesis and Characterization of CNT/$TiO_2$ Photoelectrocatalytic Electrodes for Methlene Blue Degradation,” Kor. J. Mater. Res., 18 583-91 (2008) https://doi.org/10.3740/MRSK.2008.18.11.583
  40. W. D Wang, P. Serp, P. Kalck, and J. L. Faria, “Visible Light Photodegradation of Phenol on MWNT-TiO2 Composite Catalysts Prepared by a Modified Sol.Gel Method,” J. Mole. Catal. A: Chem., 235 194-99 (2005) https://doi.org/10.1016/j.molcata.2005.02.027
  41. T. Tsumura, N. Kojitani, H. Umemura, M. Toyoda, and M. Inagaki, “Composites between Photoactive Anatase-type $TiO_2$ and Adsorptive Carbon,” Appl. Surf. Sci., 196 429-36 (2002) https://doi.org/10.1016/S0169-4332(02)00081-8
  42. T. Tsumura, N. Kojitani, I. Izumi, N. Iwashita, M. Toyoda, and M. Inagaki, “Carbon Coating of Anatase-type $TiO_2$ and Photoactivity,” J. Mater. Chem., 12 1391-96 (2002) https://doi.org/10.1039/b201942f
  43. M. L. Chen, J. S. Bae, and W. C. Oh, “Photocatalytic Effect for the Carbon-coated $TiO_2$ Prepared from Different Heat Treatment Temperature,” Anal. Sci. & Technol., 19 [6] 460-67 (2006)
  44. M. L. Chen, J. S. Bae, and W. C. Oh, “Preparation of Carbon-Coated $TiO_2$ at Different Heat Treatment temperature and Their Photoactivity,” Carbon Sci., 7 259-65 (2006)
  45. S. Kasaoka, Y. Sakata, E. Tanaka and R. Naitch, “Studies on the Adsorption of Various Dyes in the Liquid Phase,” Int. Chem. Eng., 29 734-42 (1989)
  46. N. Barka, S. Qourzal, A. Assabbane, A. Nounah and Y. Ait-Ichou, “Factors Influencing the Photocatalytic Degradation of Rhodamine B by $TiO_2$-coated Non-woven Paper,” J. Photochem. Photobiol. A., 195 346-51(2008) https://doi.org/10.1016/j.jphotochem.2007.10.022
  47. Z. Q. Yu and S. C. Chuang, “The Effect of Pt on the Photocatalytic Degradation Pathway of Methylene Blue Over $TiO_2$ under Ambient Conditions,” Appl. Catal. B: Environ., 83 277-85 (2008) https://doi.org/10.1016/j.apcatb.2008.01.040
  48. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J.M. Herrmann, “Photocatalytic Degradation Pathway of Methylene blue in Water,” Appl. Catal. B: Environ., 31 145-57 (2001) https://doi.org/10.1016/S0926-3373(00)00276-9
  49. C. L. Hsueh, Y. H. Huang and C. Y. Chen, “Novel Activated Alumina-supported Iron Oxide-Composite as a Heterogeneous Catalyst for Photooxidative Degradation of Reactive Black 5,” J. Hazard. Mater. B, 129 228-33 (2006) https://doi.org/10.1016/j.jhazmat.2005.08.044

Cited by

  1. Synthesis of Highly Stable Cobalt Nanomaterial Using Gallic Acid and Its Application in Catalysis vol.2014, pp.2314-7571, 2014, https://doi.org/10.1155/2014/686925
  2. Nanoparticles vol.7, pp.4, 2015, https://doi.org/10.1021/am5076315