DOI QR코드

DOI QR Code

Reaction Behavior of Ceramic Mat with Lithium Salt for the Electrolyte Separators of Thermal Batteries

전해질 분리판용 세라믹 부직포와 리튬염간의 반응성

  • 조광연 (한국세라믹기술원 나노소재응용본부) ;
  • 류도형 (한국세라믹기술원 나노소재응용본부) ;
  • 신동근 (한국세라믹기술원 나노소재응용본부) ;
  • 임경훈 (한국세라믹기술원 나노소재응용본부) ;
  • 진은주 (한국세라믹기술원 나노소재응용본부) ;
  • 김현이 (서울대학교 재료공학부) ;
  • 하상현 (국방과학연구소 제4기술연구본부) ;
  • 최종화 (국방과학연구소 제4기술연구본부)
  • Published : 2009.11.30

Abstract

Lithium salt have been used mainly as electrolyte of thermal battery for electricity storage. Recently, The 3phase lithium salt(LiCl-LiF-LiBr) is tried to use as electrolyte of thermal battery for high electric power. It is reported that LiCl-LiF-LiBr salt have high ion mobility due to its high lithium ion concentration. Solid lithium salt is melt to liquid state at above $500{^{\circ}C}$. The lithium ion is easily reacted with support materials. Because the melted lithium ion has small ion size and high ion mobility. For the increasing mechanical strength of electrolyte pellet, the research was started to apply ceramic filter to support of electrolyte. In this study, authors used SiOC web and glass fiber filter as ceramic mat for support of electrolyte and impregnated LiCl-LiF-LiBr salt into ceramic mat at above $500{^{\circ}C}$. The fabricated electrolyte using ceramic mat was washed with distilled water for removing lithium salt on ceramic mat. The washed ceramic mat was observed for lithium ion reaction behavior with XRD, SEM-EDS and so on.

Keywords

References

  1. P. Masset, S. Schoeffert, J. Y. Poinsoa, and J. C. Poignetc, “Retained Molten Salt Electrolytes in Thermal Batteries,” J. Pow. Sour., 139 356-65 (2005) https://doi.org/10.1016/j.jpowsour.2004.07.009
  2. J. S. Kim, W. Y. Yoon, and K. S. Yoo, “Enhancement of the Cell Performance for an Carbon Anode in Li-ion Battery,” J. Kor. Ceram. Soc., 38 755-60 (2001)
  3. R. A. Guidotti, F. W. Reinhardt, J. Daib, and D. E. Reisner, “Performance of Thermal Cells and Batteries made with Plasma-Sprayed Cathodes and Anodes,” J. Pow. Sour., 160 1456-64 (2006) https://doi.org/10.1016/j.jpowsour.2006.02.025
  4. R. A. Guidotti and P. Masset, “Thermally Activated (“thermal”) Battery Technology Part I: An Overview,” J. Pow. Sour., 161 1443-49 (2006) https://doi.org/10.1016/j.jpowsour.2006.06.013
  5. P. Masset and R. A. Guidotti, “Thermal Activated (thermal) Battery Technology Part II. Molten Salt Electrolytes,” J. Pow. Sour., 164 397-414 (2007) https://doi.org/10.1016/j.jpowsour.2006.10.080
  6. P. Singh, R.A. Guidotti, and D. Reisnerc, “AC Impedance Measurements of Molten Salt Thermal Batteries,” J. Pow. Sour., 138 323-26 (2004) https://doi.org/10.1016/j.jpowsour.2004.06.038
  7. P. Butler, C. Wagner, R. Guidotti, and I. Francis, “Long-Life, Multi-Tap Thermal Battery Development,” J. Pow. Sour., 136 240-45 (2004) https://doi.org/10.1016/j.jpowsour.2004.03.034
  8. R. A. Guidotti, F. W. Reinhardt, J. Daib, and D. E. Reisner, “Performance of Thermal Cells and Batteries Made with Plasma-Sprayed Cathodes and Anodes,” J. Pow. Sour., 160 1456-64 (2006) https://doi.org/10.1016/j.jpowsour.2006.02.025
  9. P. Masset, “Iodide-Based Electrolytes: A Promising Alternative for Thermal Batteries,” J. Pow. Sour., 160 688-97 (2006) https://doi.org/10.1016/j.jpowsour.2005.12.091
  10. J. Saunier, F. Alloin, J. Y. Sanchez, and L. Maniguet, “Plasticized Microporous Poly(Vinylidene Fluoride) Separators for Lithium-Ion Batteries. III. Gel Properties and Irreversible Modifications of Poly(Vinylidene Fluoride) Membranes under Swelling in Liquid Electrolytes,” J. Pow. Sour., 42 2308-17 (2004) https://doi.org/10.1002/polb.20099
  11. W. Y. Ching, Y. P. Li, B. W. Veal, and D. J. Lam, “Electronic Structures of Lithium Disilicate,” Phys. Rev. B., 32 1203-07 (1985) https://doi.org/10.1103/PhysRevB.32.1203