DOI QR코드

DOI QR Code

Transfer of Oxygen Vacancy and Proton in Y-doped BaZrO3

Y-doped BaZrO3에서의 산소 공공과 프로톤의 이동

  • Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Jeong, Yong-Chan (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Park, Jong-Sung (Center for Energy Materials Research, Korea Institute of Science and Technology) ;
  • Kim, Byung-Kook (Center for Energy Materials Research, Korea Institute of Science and Technology) ;
  • Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
  • 김대희 (한국기술교육대학교 신소재공학과) ;
  • 정용찬 (한국기술교육대학교 신소재공학과) ;
  • 박종성 (한국과학기술연구원 에너지재료연구단) ;
  • 김병국 (한국과학기술연구원 에너지재료연구단) ;
  • 김영철 (한국기술교육대학교 신소재공학과)
  • Published : 2009.11.30

Abstract

We studied the transfer of oxygen vacancy and proton in Y-doped BaZr$O_3$ (BYZ) using density functional theory (DFT). An oxygen vacancy was generated in the $2{\times}2{\times}2$ BYZ superstructure by replacing two Zr atoms with two Y atoms to satisfy the charge neutrality condition. The O vacancy transfer between the first and second nearest O atom sites from a Y atom showed the lowest activation energy barrier of 0.42 eV, compared to the other transfers between first and first, and second and second in the superstructure. Two protons were inserted in the structure by adding a proton and hydroxyl that were supplied by the dissociation of a water molecule. The two protons bonded to the first and second nearest O atoms were energetically the most favorable. The activation energy barrier for a proton transfer in the structure was 0.51 eV, when either proton transferred to its neighbor O atom. This value was well matched with the experimentally determined one.

Keywords

References

  1. H. Iwahara, H. Uchida, and S. Tanaka, “High Temperature Type Proton Conductor Based on $SrCeO_3$ and Its Application to Solid Electrolyte Fuel Cell,” Solid State Ionics, 9 [10] 1021-25 (1983) https://doi.org/10.1016/0167-2738(83)90125-X
  2. H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, “Proton Conduction in Sintered Oxides Based on $BaCeO_3$,” J. Electrochem. Soc., 135 [2] 529-33 (1988) https://doi.org/10.1149/1.2095649
  3. K.-D. Kreuer, S. Adams, W. Munch, A. Fuchs, U. Klock, and J. Maier, “Proton Conducting Alkaline Earth Zirconates and Titanates for High Drain Electrochemical Applications,” Solid State Ionics, 145 [1-4] 295-306 (2001) https://doi.org/10.1016/S0167-2738(01)00953-5
  4. H. G. Bohn and T. Schober, “Electrical Conductivity of the High-temperature Proton Conductor $BaZr_{0.9}Y_{0.1}O+{2.95}$,” J. Am. Ceram. Soc., 83 [4] 768-72 (2000) https://doi.org/10.1111/j.1151-2916.2000.tb01272.x
  5. S. M. Haile, G. Staneff, and K. H. Ryu, “Non-stoichiometry, Grain Boundary Transport and Chemical Stability of Proton Conducting Perovskite,” J. Mater. Sci., 36 [5] 1149-60 (2001) https://doi.org/10.1023/A:1004877708871
  6. W. G. Coors and D. W. Readey, “Proton Conductivity Measurements in Yttrium Barium Cerate by Impedance Spectroscopy,” J. Am. Ceram. Soc., 85 [11] 2637-40 (2002) https://doi.org/10.1111/j.1151-2916.2002.tb00507.x
  7. R. W. G. Wyckoff, Inorganic Compounds, pp. 181-85, Wiley, New York 1964
  8. K. D. Kreuer, “Proton-conducting Oxides,” Annu. Rev. Mater. Res., 33 333-59 (2003) https://doi.org/10.1146/annurev.matsci.33.022802.091825
  9. M. T. Sebastian, Dielectric Materials for Wireless Communication, pp. 161-204, Elsevier, Amsterdam, 2008
  10. P. S. Dobal, A. Dixit, R. S. Katiyar, Z. Yu, R. Guo, and J. M. Kiat, “Meta-generalized Gradient Approximation for the Exchange-correlation Hole with an Application to the Jellium Surface Energy,” Phys. Rev. B, 73 [20] 205104-14 (2005) https://doi.org/10.1103/PhysRevB.73.205104
  11. T. Norby, M. Widere, R. Gluckner, and Y. Larring, “Hydrogen in Oxides,” Dalton Trans., 19 [7] 3012-18 (2004)
  12. T. Matzke, U.Stimming, C. Karmonik, M. Soetrantmo, R. Hempelmann, and F. Guthoff, “Quasielastic Thermal Neutron Scattering Experiment on the Proton Conductor $SrCe_{0.95}Yb_{0.05}H_{0.02}O_{2.985}$,” Solid State Ionics, 86-88 [1] 621-28 (1996) https://doi.org/10.1016/0167-2738(96)00223-8
  13. M. A. Gomez, M. A. Griffin, S. Jindal, K. D. Rule, and V. R. Cooper, “The Effect of Octahedral Tilting on Proton Binding Sites and Transition States in Pseudo-cubic Perovskite Oxide,” J. Chem. Phys., 123 [9] 094703-10 (2005) https://doi.org/10.1063/1.2035099
  14. M. E. Bjorketun, P. G. Sundell, G. Wahnstrom, and D. Engberg, “A Kinetic Monte Carlo Study of Proton Diffusion in Disordered Perovskite Structured Lattices Based on Firstprinciples Calculations,” Solid State Ionics, 176 [39-40] 3035-40 (2005) https://doi.org/10.1016/j.ssi.2005.09.044
  15. M. E. Bjorketun, P. G. Sundell, and G. Wahnstrom, “Structure and Thermodynamics Stability of Hydrogen Interstitials in $BaZrO_3$ Perovskite Oxide from Density Functional Calculations,” Faraday Discuss., 134 247-65 (2007) https://doi.org/10.1039/b602081j
  16. P. G. Sundell, M. E. Bjorketun, and G. Wahnstrom, “Thermodynamics of Doping and Vacancy Formation in $BaZrO_3$ Perovskite Oxide from Density Functional Calculations,” Phys. Rev. B, 73 [10] 104112-21 (2006) https://doi.org/10.1103/PhysRevB.73.104112
  17. M. Karlsson, M. E. Bjorketun, P. G. Sundell, A. Matic, G. Wahnstrom, D. Engberg, L. Borjesson, I. Ahmed, S. Eriksson, and P. Berastegui, “Vibrational Properties of Protons in Hydrated $BaIn_xZr_{1-x}O_{3-x/2}$,” Phys. Rev. B, 72 [9] 094303-09 (2005) https://doi.org/10.1103/PhysRevB.72.094303
  18. B. Merinov and W. Goddard III, “Proton Diffusion Pathways and Rates in Y-doped $BaZrO_3$ Solid Oxide Electrolyte from Quantum Mechanics,” J. Chem. Phys., 130 [19] 194707-12 (2009) https://doi.org/10.1063/1.3122984
  19. G. Kresse and J. Hafner, “Ab Initio Molecular Dynamics for Liquid Metals,” Phys. Rev. B., 47 [1] 558-61 (1993); “Ab initio molecular-dynamics simulation of the liquid-metal. amorphous-semiconductor transition in germanium,” Phys. Rev. B., 49 [20] 14251-69 (1994) https://doi.org/10.1103/PhysRevB.49.14251
  20. G. Kresse and J. Furthuller, “Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set,” Comput. Mat. Sci., 6 [1] 15-50 (1996) https://doi.org/10.1016/0927-0256(96)00008-0
  21. G. Kresse and J. Furthuller, “Efficient Iterative Schemes for Ab Initio Total-energy Calculations Using a Plane-wave Basis Set,” Phys. Rev. B., 54 [16] 11169-86 (1996) https://doi.org/10.1103/PhysRevB.54.11169
  22. G. Kresse and D. Joubert, “From Ultrasoft Pseudopotentials to the Projector Augmented-wave Method,” Phys. Rev. B., 59 [3] 1758-75 (1999) https://doi.org/10.1103/PhysRevB.59.1758
  23. D. Vanderbilt, “Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism,” Phys. Rev. B., 41 [11] 7892-95 (1990) https://doi.org/10.1103/PhysRevB.41.7892
  24. D. M. Wood and A. Zunger, “A New Method for Diagonalising Large Matrices,” J. Phys. A., 18 [9] 1343-59 (1985) https://doi.org/10.1088/0305-4470/18/9/018
  25. P. Pulay, “Convergence Acceleration in Iterative Sequences: The Case of SCF Iteration,” Chem. Phys. Lett., 73 [2] 393-98 (1980) https://doi.org/10.1016/0009-2614(80)80396-4
  26. D. Sheppard, R. Terrell, and G. Henkelman, “Optimization Methods for Finding Minimum Energy Paths,” J. Chem. Phys. 128 [13] 134106-15 (2008) https://doi.org/10.1063/1.2841941
  27. M. Winterer, R. Nitsche, and H. Hahn, “Local Structure in Nanocrytalline $ZrO_2$ and $Y_2O_3$ by EXAFS,” Nanostruc. Mater., 9 397-400 (1997) https://doi.org/10.1016/S0965-9773(97)00092-5

Cited by

  1. Structural properties of Pd-barium zirconate dense membrane synthesized by dual sputtering method vol.22, pp.1, 2012, https://doi.org/10.6111/JKCGCT.2012.22.1.019