DOI QR코드

DOI QR Code

Surface Tension of Molten Ag-Sn and Au-Cu Alloys at Different Oxygen Partial Pressures

다양한 산소분압에 따른 용융 Ag-Sn 및 Ag-Cu 합금의 표면장력

  • Min, Soon-Ki (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Joon-Ho (Department of Materials Science and Engineering, Korea University)
  • 민순기 (고려대학교 신소재공학부) ;
  • 이준호 (고려대학교 신소재공학부)
  • Published : 2009.01.31

Abstract

A semi-empirical method to estimate the surface tension of molten alloys at different oxygen partial pressures is suggested in this study. The surface tension of molten Ag-Sn and Ag-Cu alloys were calculated using the Butler equation with the surface tension value of pure substance at a given oxygen partial pressure. The oxygen partial pressure ranges were $2.86{\times}10^{-12}$$1.24{\times}10^{-9}$ Pa for the Ag-Sn system and $2.27{\times}10^{-11}$$5.68{\times}10^{-4}$ Pa for the Ag-Cu system. In this calculation, the interactions of the adsorbed oxygen with other metallic constituents were ignored. The calculated results of the Ag-Sn alloys were in reasonable accordance with the experimental data within a difference of 8%. For the Ag-Cu alloy system at a higher oxygen partial pressure, the surface tension initially decreased but showed a minimum at $X_{Ag}$ = 0.05 to increase as the silver content increased. This behavior appears to be related to the oxygen adsorption and the corresponding surface segregation of the constituent with a lower surface tension. Nevertheless, the calculated results of the Ag-Cu alloys with the present model were in good agreement with the experimental data within a difference of 10%.

Keywords

References

  1. J. Lee, W. Shimoda and T. Tanaka, Mater. Trans., 45(9), 2864(2004) https://doi.org/10.2320/matertrans.45.2864
  2. I. G. Kaban, S. Gruner and W. Hoyer, Monatsh. Chem., 136(11), 1823(2005) https://doi.org/10.1007/s00706-005-0378-8
  3. M. Kucharski and P. Fima, Monatsh. Chem., 136(11), 1841(2005) https://doi.org/10.1007/s00706-005-0393-9
  4. Z. Moser, W. Gasior and J. Patrus, J. Phase Euqil., 22(3), 254(2001) https://doi.org/10.1361/105497101770338734
  5. R. M. German, Powder Metallurgy Science, 2nd ed., p.100, Metal Powder Industries Federation, Princeton, New Jersey, U.S.A., (1994)
  6. G. Bernard, C.H.P. Lupis, Metall. Trans., 2(11), 2991(1971) https://doi.org/10.1007/BF02814945
  7. R. Sangiorgi, A. A. Passerone and M. L. Muolo, Acta Metall., 30(8), 1597(1982) https://doi.org/10.1016/0001-6160(82)90180-8
  8. H. Timatsu, M. Abe, F. Nakatani, K. Ogino, J. Jpn. Inst. Metals, 49(7), 523(1985) https://doi.org/10.2320/jinstmet1952.49.7_523
  9. S. P. Mehrotra, A. C. D. Chaklader, Metall. Trans. B, 16B(3), 567(1985) https://doi.org/10.1007/BF02654855
  10. D. Chatain, F. Chabert and V. Ghetta, J. Am. Ceram. Soc., 77(1), 197 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb06977.x
  11. L. Goumiri, J. C. Joud, Acta Metall., 30(7), 1397(1982) https://doi.org/10.1016/0001-6160(82)90160-2
  12. K. Momma, H. Suto, J. Jpn. Inst. Metals, 24(6), 377(1960) https://doi.org/10.2320/jinstmet1952.24.6_377
  13. T. E. O'Brien, A. C. D. Chaklader, J. Am. Ceram, Soc., 57(8), 329(1974) https://doi.org/10.1111/j.1151-2916.1974.tb10915.x
  14. Z. Morita, A. Kasama, J. Jpn. Inst. Metals, 40(8), 787(1976) https://doi.org/10.2320/jinstmet1952.40.8_787
  15. B. Gallios, C. H. P. Lupis, Metall. Trans. B, 12(3), 549(1981) https://doi.org/10.1007/BF02654326
  16. K. Ogino, H. Taimatsu, F. Nakatani, J. Jpn. Inst. Metals, 46(10), 957(1982) https://doi.org/10.2320/jinstmet1952.46.10_957
  17. P. Kozakevitch, G. Urbain, Mem. Sci. Rev. Met., 58, 517(1961)
  18. B. J. Keen, K. C. Mills, J. W. Bryan and E. D. Hondros, Can. Met. Q., 21(4), 393(1982) https://doi.org/10.1179/cmq.1982.21.4.393
  19. A. Kasama, A. McLean, W. A. Miller, Z. Morita, M. J. Ward, Can. Met. Q., 22(1), 9(1983) https://doi.org/10.1179/cmq.1983.22.1.9
  20. K. Ogino, H. Taimatsu, J. Jpn. Inst. Metals, 43(10), 871(1979) https://doi.org/10.2320/jinstmet1952.43.9_871
  21. H. Taimatsu, K. Ogino and F. Nakatani, J. Jpn. Inst. Metals, 50(2), 176(1986) https://doi.org/10.2320/jinstmet1952.50.2_176
  22. D. H. Bradhurst, A. S. Buchanan, J. Phys. Chem, 63, 1486(1959) https://doi.org/10.1021/j150579a039
  23. Z. Niu, K. Mukai, Y. Shiraishi, T. Hibiya, K. Kakimoto and M. Koyama, J. Jpn. Assoc. Crystal. Growth, 24(4), 369(1997)
  24. K. Mukai, Z. Yuan, Mater. Trans. JIM, 41(2), 331(2000) https://doi.org/10.2320/matertrans1989.41.331
  25. A. Passerone, R. Sangiorgi and G. Caracciolo, J. Chem. Thermodynamics, 15(10), 971(1983) https://doi.org/10.1016/0021-9614(83)90131-3
  26. H. Taimatsu, R. Sangiorgi, Surf. Sci., 261(1-3), 375(1992) https://doi.org/10.1016/0039-6028(92)90248-5
  27. Z. Yuan, K. Mukai, K. Takagi and M. Ohtaka, J. Jpn. Inst. Metals, 65(1), 21(2001) https://doi.org/10.2320/jinstmet1952.65.1_21
  28. V. Ghetta, J. Fouletier and D. Chatain, Acta Mater., 44(5), 1927(1996) https://doi.org/10.1016/1359-6454(95)00312-6
  29. C. H. P. Lupis, Chemical Thermodynamics of Materials, p. 433, North-Holland, New York, (1983)
  30. J. Lee, T. Tanaka, M. Yamamoto and S. Hara, Mater. Trans., 45(3), 625(2004) https://doi.org/10.2320/matertrans.45.625
  31. J. Lee, T. Tanaka, Y. Asano and S. Hara, Mater. Trans., 45(8), 2719(2004) https://doi.org/10.2320/matertrans.45.2719
  32. K. S. Yeum, R. Speiser and D. R. Poirier, Metall. Trans. B, 20B(5), 693(1989) https://doi.org/10.1007/BF02655927
  33. T. Tanaka, S. Hara, Steel Res., 72(11+12), 439(2001) https://doi.org/10.1002/srin.200100149
  34. J. Lee, K. Morita, Scan. J. Metall., 34(2), 131(2005) https://doi.org/10.1111/j.1600-0692.2005.00725.x
  35. J.A. Butler, Proc. Roy. Soc. A, 135, 348(1932) https://doi.org/10.1098/rspa.1932.0040
  36. T. Tanaka, S. Hara, M. Ogawa and T. Ueda, Z. Metallkd., 89(5), 368(1998)
  37. E. T. Turkdogan, Physical Chemistry of High Temperature Technology, p. 5-21, Academic Press, New York, (1980)
  38. T. Tanaka, M. Nakamoto, R. Oguni, J. Lee and S. Hara, Z. Metallkd., 95(9), 818(2004) https://doi.org/10.3139/146.018027