DOI QR코드

DOI QR Code

Characteristics of IGZO Thin Film Transistor Deposited by DC Magnetron Sputtering

DC 마그네트론 스퍼터링 방법을 이용하여 증착한 IGZO 박막트랜지스터의 특성

  • Kim, Sung-Yeon (Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University) ;
  • Myoung, Jae-Min (Information and Electronic Materials Research Laboratory, Department of Materials Science and Engineering, Yonsei University)
  • 김성연 (연세대학교 신소재공학부) ;
  • 명재민 (연세대학교 신소재공학부)
  • Published : 2009.01.31

Abstract

Indium Gallium Zinc Oxide (IGZO) thin films were deposited onto 300 nm-thick oxidized Si substrates and glass substrates by direct current (DC) magnetron sputtering of IGZO targets at room temperature. FESEM and XRD analyses indicate that non-annealed and annealed IGZO thin films exhibit an amorphous structure. To investigate the effect of an annealing treatment, the films were thermally treated at $300^{\circ}C$ for 1hr in air. The IGZO TFTs structure was a bottom-gate type in which electrodes were deposited by the DC magnetron sputtering of Ti and Au targets at room temperature. The non-annealed and annealed IGZO TFTs exhibit an $I_{on}/I_{off}$ ratio of more than $10^5$. The saturation mobility and threshold voltage of nonannealed IGZO TFTs was $4.92{\times}10^{-1}cm^2/V{\cdot}s$ and 1.46V, respectively, whereas these values for the annealed TFTs were $1.49{\times}10^{-1}cm^2/V{\cdot}$ and 15.43V, respectively. It is believed that an increase in the surface roughness after an annealing treatment degrades the quality of the device. The transmittances of the IGZO thin films were approximately 80%. These results demonstrate that IGZO thin films are suitable for use as transparent thin film transistors (TTFTs).

Keywords

References

  1. E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins, Thin Solid Films, 487, 205 (2005) https://doi.org/10.1016/j.tsf.2005.01.066
  2. H. Hosono, Thin Solid Films, 515, 6000 (2007) https://doi.org/10.1016/j.tsf.2006.12.125
  3. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science, 300, 1269 (2003) https://doi.org/10.1126/science.1083212
  4. R.L. Hoffman, B.J. Norris, and J.F. Wager, Appl. Phys. Lett., 82, 733 (2003) https://doi.org/10.1063/1.1542677
  5. R. Martins, P. Almeida, P. Barquinha, L. Pereira, I. Ferreira and E. Fortunato, J. Non. Cryst. Solids, 352, 1471 (2006) https://doi.org/10.1016/j.jnoncrysol.2006.02.009
  6. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya and H. Hosono, Appl. Phys. Lett., 89, 112123 (2006) https://doi.org/10.1063/1.2353811
  7. E. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Goncalves, A.J.S. Marques, L.M.N. Pereira and R. Martins, Adv. Mater., 17, 590 (2005) https://doi.org/10.1002/adma.200400368
  8. C. J. Kim, D. H. Kang, I. H. Song, J. C. Park, H. Lim, S. I. Kim, B. H. Lee, R. J. Chung, J. C. Lee, and Y. S. Park, IEDM Tech. Dig, 11.6.1 (2006)
  9. H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Appl. Phys. Lett., 86, 013503 (2005) https://doi.org/10.1063/1.1843286
  10. G. Lavareda, C. Nunes de Carvalho, E. Fortunato, A.R. Ramos, E. Alves, O. Conde and A. Amaral, J. Non-Cryst. Solids, 352, 2311 (2006) https://doi.org/10.1016/j.jnoncrysol.2006.03.031
  11. K. Matsuzaki, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hiranob, and H. Hosono, Thin Solid Films, 496, 37 (2006) https://doi.org/10.1016/j.tsf.2005.08.187
  12. R. E. Presley, C. L. Munsee, C.-H. Park, J. F. Wager, and D. A. Keszler, J. Phys. D: Appl. Phys., 37, 2810, (2004) https://doi.org/10.1088/0022-3727/37/20/006
  13. G. Hu, B. Kumar, H. Gong, E. F. Chor, and P. Wu, Appl. Phys. Lett., 88, 101901 (2006) https://doi.org/10.1063/1.2178404
  14. H. Jeon, V. P. Verma, S. Hwang, S. Lee, C. Park, D. H. Kim, W. Choi, and M. Jeon, Jpn. J. Appl. Phys., 47, 87 (2008) https://doi.org/10.1143/JJAP.47.87
  15. W. Lim, Y. L. Wang, F. Ren, D. P. Norton, I. I. Kravchenko, J. M. Zavada, and S. J. Pearton, Appl. Surf. Sci., 254, 2828 (2008)
  16. D. Hong, H. Q. Chiang, and J. F. Wager, J. Vac. Sci. Technol. B, 24, L23 (2006) https://doi.org/10.1116/1.2345206
  17. J. K. Jeong, M. Kim, J. H. Jeong, H. J. Lee, T. K. Ahn, H. S. Shin, K. Y. Kang, H. Seo, J. S. Park, H. Yang, H. J. Chung, Y. G. Mo and H. D. Kim, IMID Digest, 145 (2007)
  18. A. Suresh, P. Gollakota, P. Wellenius, A. Dhawan, and J.F. Muth, Thin Solid Films, 516, 1326 (2008) https://doi.org/10.1016/j.tsf.2007.03.153
  19. H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Thin Solid Films, 516, 1516 (2008) https://doi.org/10.1016/j.tsf.2007.03.161
  20. W. Lim, S. Kim, Y.-L. Wang, J. W. Lee, D.P. Norton, S. J. Pearton, F. Ren, and I. I. Kravchenko J. Electrochem. Soc., 155, H383 (2008) https://doi.org/10.1149/1.2903294

Cited by

  1. Characteristics of ZnO Nanorod/ZnO/Si(100) Grown by Hydrothermal Method vol.22, pp.4, 2012, https://doi.org/10.3740/MRSK.2012.22.4.180