DOI QR코드

DOI QR Code

Low-Temperature Growth of N-doped SiO2 Layer Using Inductively-Coupled Plasma Oxidation and Its Effect on the Characteristics of Thin Film Transistors

플라즈마 산화방법을 이용한 질소가 첨가된 실리콘 산화막의 제조와 산화막 내의 질소가 박막트랜지스터의 특성에 미치는 영향

  • Kim, Bo-Hyun (Department of Materials Science and Engineering, KAIST) ;
  • Lee, Seung-Ryul (Department of Materials Science and Engineering, KAIST) ;
  • Ahn, Kyung-Min (Department of Materials Science and Engineering, KAIST) ;
  • Kang, Seung-Mo (Department of Materials Science and Engineering, KAIST) ;
  • Yang, Yong-Ho (Department of Materials Science and Engineering, KAIST) ;
  • Ahn, Byung-Tae (Department of Materials Science and Engineering, KAIST)
  • 김보현 (한국과학기술원 신소재공학과) ;
  • 이승렬 (한국과학기술원 신소재공학과) ;
  • 안경민 (한국과학기술원 신소재공학과) ;
  • 강승모 (한국과학기술원 신소재공학과) ;
  • 양용호 (한국과학기술원 신소재공학과) ;
  • 안병태 (한국과학기술원 신소재공학과)
  • Published : 2009.01.31

Abstract

Silicon dioxide as gate dielectrics was grown at $400^{\circ}C$ on a polycrystalline Si substrate by inductively coupled plasma oxidation using a mixture of $O_2$ and $N_2O$ to improve the performance of polycrystalline Si thin film transistors. In conventional high-temperature $N_2O$ annealing, nitrogen can be supplied to the $Si/SiO_2$ interface because a NO molecule can diffuse through the oxide. However, it was found that nitrogen cannot be supplied to the Si/$SiO_2$ interface by plasma oxidation as the $N_2O$ molecule is broken in the plasma and because a dense Si-N bond is formed at the $SiO_2$ surface, preventing further diffusion of nitrogen into the oxide. Nitrogen was added to the $Si/SiO_2$ interface by the plasma oxidation of mixtures of $O_2/N_2O$ gas, leading to an enhancement of the field effect mobility of polycrystalline Si TFTs due to the reduction in the number of trap densities at the interface and at the Si grain boundaries due to nitrogen passivation.

Keywords

References

  1. G. Lucovsky, J. Non-Cryst. Solids, 254, 26 (1999) https://doi.org/10.1016/S0022-3093(99)00432-9
  2. J.W. Lee, N. I. Lee and C.H. Han, IEEE Electon Device Lett., 19, 458 (1998) https://doi.org/10.1109/55.735745
  3. D. A. Carl, D. W. Hess, and M. A. Lieberman, J. Vac. Sci. Technol. A , 8, 2924 (1990) https://doi.org/10.1116/1.576607
  4. S. Chakraborty, T. Yoshida, T. Hashizume, H. Hasegawa and T. Saki, J. Vac. Sci. Technol. B, 16, 2159 (1998) https://doi.org/10.1116/1.589845
  5. N. I. Lee, J. W. Lee, S. H. Hur, H. S. Kim, and C. H. Han, IEEE Electron Device Lett., 18, 486 (1997) https://doi.org/10.1109/55.624924
  6. Y. W. Choi and B. T. Ahn, J. Appl. Phys., 86, 4004 (1999) https://doi.org/10.1063/1.371320
  7. Y. W. Choi, S. W. Park and B. T. Ahn, Appl. Phys. Lett., 74, 2693 (1999) https://doi.org/10.1063/1.123939
  8. W. Ting, H. Hwang, L. Lee and D. L. Kwong, J. Appl. Phys., 70(2), 1072 (1991) https://doi.org/10.1063/1.349701
  9. E. C. Carr, K. A. Ellis and R. A. Buhrman, Appl. Phys. Lett., 66, 1492 (1995) https://doi.org/10.1063/1.113665
  10. R. I. Hedge, P. J. Tobin, K. G. Renid, B. Maiti and S. A. Ajuria, J. Appl. Phys., 66, 2882 (1995)
  11. B. H. Kim, J. H. Ahn, and B. T. Ahn, Appl. Phys. Lett., 82, 2682 (2003) https://doi.org/10.1063/1.1568168
  12. B. H. Kim, S. R. Lee, K. M. Ahn and B. T. Ahn, Electron. Mater. Lett., 4(2), 45 (2008)

Cited by

  1. Ceramic Coatings on the Al2021 Alloy by Electrolytic Plasma Processing vol.22, pp.3, 2012, https://doi.org/10.3740/MRSK.2012.22.3.155