DOI QR코드

DOI QR Code

The Antioxidative Activities of Torreya nucifera Seed Extracts

비자(Torreya nucifera) 추출물의 생리활성

  • Jeon, Ho-Sung (Research Institute for Biomedical Resources) ;
  • Lee, Yang-Suk (Dept. of Herbal Biotechnology, Daegu Haany University) ;
  • Kim, Nam-Woo (Dept. of Herbal Biotechnology, Daegu Haany University)
  • 전호성 ((주)정문 한방생명자원연구소) ;
  • 이양숙 (대구한의대학교 한방생약자원학과) ;
  • 김남우 (대구한의대학교 한방생약자원학과)
  • Published : 2009.01.31

Abstract

This study was investigated to analyze the contents of flavonoid and polyphenol compounds, and inhibitory activities of tyrosinase and antioxidation to measure physiological effect of reflux water extraction (WE), reflux ethanol extraction (EE) and hot water extract under high pressure (HWE) of Torreya nucifera seed. HWE yields the highest contents of flavonoid compounds (176.34 mg/g) and polyphenol compounds (112.95 mg/g). The tyrosinase inhibitory rates were $5.62{\sim}28.71%$ at 2.0 mg/mL and HWE showed the highest inhibition rate. The nitrite scavenging abilities of all extracts were over 90% at pH 1.2 and 3.0 at the concentration of 2.0 mg/mL. The superoxide dismutase (SOD)-like activities of HWE was the highest value of 33.58%. The electron donating abilities (EDA) were $66.46{\sim}89.72%$ and HWE was the highest when the extracts were tested at 0.1 mg/mL. The EDA of all extracts were decreased with an increment of the extracts concentrations. The xanthine oxidase inhibitory rate of HWE was the highest value of 89.29% at the concentration of 2.0 mg/mL and the WE and HWE were over 75% rate of xanthine oxidase inhibition at 0.5 mg/mL.

식용 및 한방생약재로 사용되고 있는 비자나무(T. nucifera) 종자인 비자(榧子)를 천연 항산화 소재로 활용하기 위한 연구의 일환으로 물 추출물(WE)과 에탄올 추출물(EE) 그리고 열수 추출물(HWE)에 함유된 플라보노이드와 폴리페놀 화합물의 함량과 tyrosinase 저해, 아질산염 소거, 전자공여, xanthine oxidase 저해활성 등 항산화적 생리활성을 측정하였다. 추출방법과 용매를 달리한 비자의 수율은 $100^{\circ}C$ 이상의 고온과 압력이 가해진 HWE가 7.08 g/100 g으로 가장 높은 수율을 나타내었다. 또한 비자의 HWE는 35.47mg/g의 플라보노이드와 112.95 mg/g의 폴리페놀 화합물을 함유하였다. 비자의 각 추출물에 대한 tyrosinase 저해율은 2.0 mg/mL의 농도에서 $5.62{\sim}28.71%$로 WE에서 가장 높은 저해효과를 나타내었다. 아질산염의 소거능을 측정한 결과에서는 pH 1.2의 2.0 mg/mL의 조건에서 HWE가 94.30 %로 가장 높은 소거효과를 보였으며, pH 1.2와 3.0에서 비자의 세 가지 추출물 모두 약 90% 이상의 아질산염 소거능을 나타내었다. SOD 유사활성능은 HWE에서 33.58%로 WE (17.70%)와 EE(24.16%)보다 약 $1.4{\sim}2$배 높은 활성을 보였다. 전자공여능은 0.1 mg/mL의 농도에서 $66.46{\sim}89.72%$로 WE에서 높았으며, 추출물의 농도가 증가함에 따라 유의적으로 전자공여능이 감소하였다(p<0.05). Xanthine oxidase 저해는 HWE에서 89.29%로 가장 높은 저해효과를 나타내었으며, 0.5 mg/mL의 농도에서도 WE와 HWE는 75% 이상의 저해율을 나타내었다. 이상의 실험 결과 비자는 물을 용매로 추출하는 것이 다량의 플라보노이드와 폴리페놀 화합물 추출에 효과적인 것으로 판단되며 또한 우수한 생리활성 효과를 나타내므로 이를 이용하여 기능성식품이나 제품의 첨가물 또는 의약품 재료로 개발, 활용할 수 있는 유용한 한방생약자원인 것으로 판단된다.

Keywords

References

  1. Freeman BA, Grapo JD. 1982. Biology of disease; free radicals and tissue injury. Lab Invest 47: 412-426
  2. McCord JM. 1987. Oxygen-derived radicals; a link between repercussion injury and inflammation. Fed Proc 46: 2402-2406
  3. Barene AL. 1975. Toxicological and biochemistry of butylated hydroxyanisole and butylated hydroxytolune. J Am Oil Chem Soc 52: 59-63 https://doi.org/10.1007/BF02901825
  4. Choe SY, Yang KH. 1982. Toxicological studies of antioxidants, butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA). Korean J Food Sci Technol 14: 283-288
  5. Thomas MJ. 1995. The role of free radicals and antioxidants: How do you know that they are working? Crit Rev Food Sci 35: 21-39 https://doi.org/10.1080/10408399509527683
  6. Hara C, Kumazawa Y, Inagki K, Kaneko M, Kiho T, Ukai S. 1986. Mitogenic and colony-stimulating factor-inducing activity of polysaccharide fractions from the fruit bodies of Dictyohora indusiata. Fisch Chem Pharm Bull 39: 1615-1616
  7. Nam HY, Cho JS. 2006. Quality characteristics of white pan bread with ingredients of Sagoonja-Tang. Korean J Food Cookery Sci 22: 458-467
  8. Hong SP, Jeong HS, Jeong EJ, Shin DH. 2006. Quality characteristic of beverage with Gastrodia elata Blume extract. J Fd Hyg Safety 21: 31-35
  9. Lee SJ. 1966. Korean folk medicine. Seoul National Univ, Seoul, Korea. p 6
  10. Chung BS, Ko YS. 1978. Studies on the sterol components of Torreya nut of Korea. Yakhak Hoeji 22: 87-90
  11. Lee TB. 1993. Illustrated flora of Korea. 5th ed. Hyangmoonsa, Seoul, Korea. p 56
  12. Endo Y, Osada Y, Kimura F, Fujimoto K. 2006. Effects of Japanese torreya (Torreya nucifera) seed oil on lipid metabolism in rats. Nutrition 22: 553-558 https://doi.org/10.1016/j.nut.2005.08.012
  13. Im HS, Yoon KR, Chung DH. 1980. Studies on the lipid components of Torreya nucifera seed. Korean J Food Sic Technol 12: 324-327
  14. Joh YG, Kim KJ, Bark KS, Jeong TM. 1981. Studies on the composition and chemical structure of desmethylsterols from Torreya nucifera seeds. Korean J Food Sci Technol 13: 127-132
  15. Kim ND. 1996. Study on the anthelmintic principle of Torreya nucifera. J Pharmaceu Soc Kor 10: 30-32
  16. Oh HJ, Ann HM, So KH, Kim SS, Yun PY, Jeon GL, Riu KZ. 2007. Chemical and antimicrobial properties of essential oils from three coniferous trees Abies koreana, Cryptomeria japonica, and Torreya nucifera. J Appl Biol Chem 50: 164-169
  17. 國家中医药管理局編委会. 1999. 中華本草. 上海科學技術出版社, 上海. Vol 2, p 364-348
  18. 南京药學院编写组. 1978. 中草药學(中册). 江苏人民出版社, 南京. Vol 1, p 86
  19. Chen BQ, Cui XY, Zhao X, Zhang YH, Piao HS, Kim JH, Lee BC, Pyo HB, Yun YP. 2006. Antioxidative and acute antiinflammatory effects of Torreya grandis. Fitoterapia 77: 262-267 https://doi.org/10.1016/j.fitote.2006.03.019
  20. Lui ZL, Goh SH, Ho SH. 2007. Screening of chinese medicinal herbs for bioactivity against Sitophilus zeamais Motschulsky and Tribolium castaneum (Herbst). J Sto Pro Res 43: 290-296 https://doi.org/10.1016/j.jspr.2006.06.010
  21. Nieva Moreno MI, Isla MI, Sampietro AR, Vattuone MA. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 71: 109-114 https://doi.org/10.1016/S0378-8741(99)00189-0
  22. AOAC. 2005. Official Method of Analysis. 18th ed. Association of Official Analytical Chemists, Washington, DC, USA. Vol 45, p 21-22
  23. Yagi A, Kanbara T, Morinobu N. 1987. Inhibition of mushroom-tyrosinase by aloe extract. Planta Medica 53: 517-519 https://doi.org/10.1055/s-2006-962798
  24. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F. 1987. Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric Biol Chem 51: 1333-1338 https://doi.org/10.1271/bbb1961.51.1333
  25. Marklund S, Marklund G. 1975. Involvement of superoxide amino radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 468-474
  26. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200 https://doi.org/10.1038/1811199a0
  27. Stirpe F, Corte ED. 1969. The regulation of rat liver xanthine oxidase. J Biol Chem 244: 3855-3861
  28. Woo KS, Jang KI, Kim KY, Lee HB, Jeong HS. 2006. Antioxidative activity of heat treated licorice (Glycyrrhiza uralensis Fisch) extracts. Korean J Food Sci Technol 38: 355-360
  29. Turkmen N, Sari F, Velioglu YS. 2005. The effect of cooking methods total phenolics and antioxidant activity of selected green vegetables. Food Chem 93: 713-718 https://doi.org/10.1016/j.foodchem.2004.12.038
  30. Choi Y, Lee SM, Chun J, Lee HB, Lee J. 2006. Influence of heat treatment on the antioxidative activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem 99: 381-387 https://doi.org/10.1016/j.foodchem.2005.08.004
  31. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. 2004. Screening of the antioxidant activity of some medicinal plants. Korean J Food Sci Technol 36: 333-338
  32. Moon JS, Kim SJ, Park YM, Hwang IS, Kim EY, Park JW, Park IB, Kim SW, Kang WG, Park YK, Jung ST. 2004. Antimicrobial effect of methanol extracts from some medicinal herbs and content of phenolic compounds. Korean J Food Preserv 11: 207-213
  33. Bors W, Saran M. 1987. Radical scavenging by flavonoid antioxidants. Free Radic Res Comm 2: 289-294 https://doi.org/10.3109/10715768709065294
  34. Choi BW, Lee BH, Kang KJ, Lee ES, Lee NH. 1998. Screening of the tyrosinase inhibitors from marine algae and medicinal plants. Kor J Pharmacogn 29: 237-242
  35. Kim JK, Cha WS, Park JH, Oh SL, Cho YJ, Chum SS, Choi C. 1997. Inhibition effect against tyrosinase of condensed tannins from Korean green tea. Korean J Food Sci Technol 29: 173-177
  36. Lee SJ, Park DW, Jang HG, Kim CY, Park YS, Kim TC, Heo BG. 2006. Total phenol content, electron donating ability, and tyrosinase inhibition activity of pear cut branch extract. Korean J Hort Sci Technol 24: 338-341
  37. Lee YS, Joo EY, Kim NW. 2006. Polyphenol contents and physiological activity of the Lespedeza bicolor extracts. Korean J Food Preserv 13: 616-622
  38. Son JY, Heuing BJ, Takeda Y, Ando K. 2007. Functional properties of nutmeg. Korean J Food Cookery Sci 23: 33-40
  39. Moon JS, Kim SJ, Park YM, Hwang IS, Kim EH, Park JW. 2004. Activities of antioxidation and alcohol dehydrogenase inhibition of methanol extracts from some medicinal herbs. Korean J Food Preserv 11: 201-206
  40. Kytopoulos SA. 1987. Ascorbic acid and formation of N-nitroso compounds; possible role of ascorbic acid in cancer prevention. Am J Clin Nutr 45: 1344-1350
  41. Shenoy NR, Choughuley ASU. 1989. Effect of certain phenolic on nitrosamine formation. J Agric Food Chem 37: 721-726 https://doi.org/10.1021/jf00087a031
  42. Kuenzing W, Chau J, Norkus E, Conney AH. 1984. Caffeic and ferulic acid as blokers of nitrosamine formation. Carcinogenesis 5: 309-312 https://doi.org/10.1093/carcin/5.3.309
  43. Lim JD, Yu CY, Kim MJ, Yun SJ, Lee SJ, Kim NY, Chung IM. 2004. Comparison of SOD activity and phenolic compound contents in various Korean medicinal plants. Korean J Medicinal Crop Sci 12: 191-202
  44. Sato M, Ramarathnam N, Suzuki Y, Ohkubo T, Takeuchi M, Ochi H. 1996. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J Agric Food Chem 44: 37-41 https://doi.org/10.1021/jf950190a
  45. Hayashi T, Sawa K, Kawasaki M, Arisawa M, Shimizu M, Morita N. 1988. Inhibition of cow's milk xanthine oxidase by flavonoids. J Nat Prod 51: 345-348 https://doi.org/10.1021/np50056a030
  46. Kim SA, Oh SI, Lee MS. 2007. Antioxidative and cytotoxic effects of solvent fractions from Elaeagnus multiflora. Korean J Food and Nutr 20: 134-142
  47. Kang YH, Park YK, Lee GD. 1996. The nitrite scavenging and electron donating ability of phenolic compounds. Korean J Food Sci Technol 28: 232-239
  48. Jung SJ, Lee JH, Song HN, Seong NS, Lee SE, Baek NI. 2004. Screening for antioxidant activity of plant medicinal extracts. J Korean Soc Appl Biol Chem 47: 135-140
  49. Wyngaarden JB, Holmes EW Jr. 1977. Molecular nature of enzyme regulation in purine biosynthsis. Ciba Found Symp 48: 43-64
  50. Hyun SH, Jung SK, Jwa MK, Song CK, Kim JH, Lim SB. 2007. Screen of antioxidants and cosmeceuticals from natural plant resources in Jeju island. Korean J Food Sci Technol 39: 200-208

Cited by

  1. Down-regulation of Tyrosinase, MITF, TRP-1, and TRP-2 Expressions by Juniperus rigida Sieb. in Murine B16F10 Melanoma vol.23, pp.12, 2013, https://doi.org/10.5352/JLS.2013.23.12.1445
  2. Immuno-enhancing Effect of Seed Extracts on a RAW 264.7 Macrophage Cell Line vol.41, pp.12, 2012, https://doi.org/10.3746/jkfn.2012.41.12.1671
  3. Inhibitory Efficacy of Angelica gigas Nakai on Microphthalmia-associated Transcription Factor (MITF), Tyrosinase Related Protein-1 (TRP-1), Tyrosinase Related Protein-2 (TRP-2), and Tyrosinase mRNA Expression in Melanoma Cells (B16F10) vol.23, pp.11, 2013, https://doi.org/10.5352/JLS.2013.23.11.1336
  4. Antioxidant and Anti-Inflammatory Activities of Extracts of Traditional Medicinal Plants Mixtures 1 and 2 vol.21, pp.4, 2011, https://doi.org/10.5352/JLS.2011.21.4.596
  5. Antioxidative activity and Angiotensin Converting Enzyme Inhibitory activity of Fermented Medical Plants (DeulBit) and Its Modulatory Effects of Nitric Oxide Production vol.53, pp.2, 2010, https://doi.org/10.3839/jabc.2010.017
  6. Evaluation of the Biological Activity of Extracts from Star-Anise (Illicium verum) vol.14, pp.3, 2009, https://doi.org/10.3746/jfn.2009.14.3.195
  7. Antimicrobial Effects on Food-Borne Pathogens and the Antioxidant Activity of Torreya Nucifera Extract vol.26, pp.4, 2015, https://doi.org/10.7856/kjcls.2015.26.4.697
  8. Effects of Anthelmintic Plant Extracts on Ruminal Fermentation Characteristics, Bacterial Diversity and Methane Production in vitro vol.48, pp.3, 2014, https://doi.org/10.14397/jals.2014.48.3.113
  9. 비자 열수 추출물의 항산화 활성 및 뇌신경세포 보호효과 연구 vol.32, pp.6, 2009, https://doi.org/10.6116/kjh.2017.32.6.41
  10. 한국산 및 중국산 비자 열매의 항산화 활성과 유효성분 비교 vol.50, pp.3, 2018, https://doi.org/10.9721/kjfst.2018.50.3.274
  11. Effect of Defatted Torreya nucifera Seed Extract on the Cross-linking of Advanced Glycation End Products to Collagen vol.45, pp.1, 2009, https://doi.org/10.15230/scsk.2019.45.1.19
  12. 비자의 항균 및 알레르기성 접촉 피부염 개선 작용 연구 vol.33, pp.6, 2009, https://doi.org/10.15188/kjopp.2019.12.33.6.341