DOI QR코드

DOI QR Code

Effect of Crude Saponins from Soybean Cake on Body Weight and Glucose Tolerance in High-Fat Diet Induced Obese Mice

대두박 사포닌 보충이 식이성 유도 비만마우스의 체중과 내당능에 미치는 영향

  • Kim, Sung-Mi (Dept. of Nutrition Education, Graduate School of Education, Sunchon National University) ;
  • Seo, Kwon-Il (Dept. of Food and Nutrition, Sunchon National University) ;
  • Park, Kyung-Wuk (Dept. of Food and Nutrition, Sunchon National University) ;
  • Jeong, Yong-Kee (Dept. of Biotechnology, Dong-A University) ;
  • Cho, Young-Su (Dept. of Biotechnology, Dong-A University) ;
  • Kim, Myung-Joo (Dept. of Food Science and Nutrition, Daegu Polytechnic College) ;
  • Kim, Eun-Jung (Dept. of Food Science and Nutrition, Catholic University of Daegu) ;
  • Lee, Mi-Kyung (Dept. of Food and Nutrition, Sunchon National University)
  • 김성미 (순천대학교 교육대학원 영양교육) ;
  • 서권일 (순천대학교 식품영양학과) ;
  • 박경욱 (순천대학교 식품영양학과) ;
  • 정영기 (동아대학교 생명공학과) ;
  • 조영수 (동아대학교 생명공학과) ;
  • 김명주 (대구산업정보대학 식품영양과) ;
  • 김은정 (대구가톨릭대학교 식품영양학과) ;
  • 이미경 (순천대학교 식품영양학과)
  • Published : 2009.01.31

Abstract

This study investigated the beneficial effects of crude saponins from soybean cake on body weight and glucose tolerance in high-fat (37% calories from fat) diet fed C57BL/6 mice. The mice were supplemented with three doses of saponins (0.5%, 1.0%, and 1.5%, wt/wt) and 1.0% Garcinia cambogia (wt/wt), positive control for 9 weeks. The body weight, visceral fat weight and epididymal adipocyte area were significantly reduced in the saponin supplemented groups in a dose dependent manner compared to the high-fat group. Saponins did not significantly affect food intake; however, cambogia significantly lowered food intake compared to the high-fat fed control group. The crude saponins from soybean cake supplement significantly lowered plasma leptin, triglyceride and total cholesterol levels, whereas they significantly elevated the fecal excretion of triglyceide in a dose dependent manner compared to the high-fat group. Cambogia did not affect the fecal excretion of lipid in the diet-induced obese mice. Supplementation of 1.5% saponin reduced the hepatic triglyceride content compared to the high-fat group. High-fat induced glucose intolerance with the elevation of blood glucose levels compared to the normal group; however, the saponins supplement significantly improved postprandial glucose levels. After 9 weeks of being fed a high-fat diet, the mice presented with significantly increased activities of hepatic fatty acid synthase and fatty acid ${\beta}$-oxidation; however, saponins and cambogia normalized these activities. These results indicate that saponins from soybean cake exhibit a potential anti-obesity effect and may prevent glucose intolerance by reducing body weight and plasma lipids, increasing fecal lipid excretion and regulating hepatic lipid metabolism in high-fat fed mice.

본 연구는 폐기되는 대두박으로부터 분리한 사포닌이 고 지방식이로 유도한 비만마우스의 체중, 지질 함량, 지질대사 및 내당능에 미치는 영향을 살펴보았다. 4주령의 C57BL/6 마우스(n=48)를 1주일간 적응시킨 후 정상식이를 급여한 정상군, 고지방을 급여한 고지방대조군, 고지방식이에 대두박 사포닌을 수준별(0.5%, 1.0%, 1.5%, w/w)로 급여한 군들과 양성대조물질인 가르시니아 캄보지아(1.0%, w/w)를 급여한 군으로 나누어 9주간 사육하였다. 체중증가량과 내장지방 (부고환 지방과 신장주변 지방) 무게는 고지방대조군에 비하여 대두박 사포닌 급여 수준에 의존적으로 낮아졌다. 캄보지아는 식이섭취량을 억제시킨 반면, 대두박 사포닌은 비만유도 마우스의 식이섭취량에 유의적인 영향을 미치지 않았다. 혈장 중의 렙틴 함량은 고지방대조군에 비하여 대두박사포닌 보충군에서 낮았다. 대두박 사포닌 급여수준에 관계 없이 혈장의 중성지질과 총 콜레스테롤 함량은 유의적으로 낮아진 반면, 사포닌 급여 수준에 의존적으로 변으로 중성지질 배설은 유의적으로 높았다. 한편, 캄보지아는 변의 지질 함량에 유의적인 영향을 미치지 않았다. 간조직 중의 중성지방과 콜레스테롤 함량 역시 고지방대조군에 비하여 대두박사포닌 급여군(1.5%)에서 유의적으로 개선되었으나 캄보아지군의 콜레스테롤 함량은 증가되었다. 고지방식이는 정상 식이에 비하여 혈당과 내당능을 유의적으로 증가시켰으나 대두박 사포닌과 캄보지아 급여는 혈당과 식후 혈당 변화를 효과적으로 개선하는 것으로 나타났다. 특히, 1.5% 대두박사포닌 급여군의 혈당은 정상군 수준이었다. 9주 동안 고지방식이 급여는 간조직 중의 지방산 합성과 산화효소활성을 모두 증가시켰는데 합성효소의 상승이 훨씬 큰 것으로 나타났다. 그러나 대두박 사포닌은 간조직 중의 지방산 합성과 산화효소활성을 정상화하였다. 이와 같이 대두박 사포닌은 비만유도 마우스에서 변으로의 중성지질 배설을 증가시키고 간조직에서 지질대사 관련 효소활성을 조절함으로써 체중조절과 혈당개선에 효과적이었다.

Keywords

References

  1. WHO. 2006. Obesity and overweight. Fact sheet No. 311
  2. Ministry of Health and Welfare. 2006. 2005 National health and nutrition survey, overview
  3. John H. 2000. Soy: health claims for soy protein, questions about other components. FDA Consumer magazine. May/June. Vol 34, No. 3
  4. Kerckhoffs DA, Brouns F, Hornstra G, Mensink RP. 2002. Effects on the human serum lipoprotein profile of beta-glucan, soy protein and isoflavones, plant sterols and stanols, garlic and tocotrienols. J Nutr 132: 2494-2505
  5. Wang ZW, Gu MY, Li GZ. 2005. Surface properties of gleditsia saponin and synergisms of its binary system. J Disper Sci Technol 26: 341-347 https://doi.org/10.1081/DIS-200049604
  6. Thompson LU. 1993. Potential health benefits and problems associated with antinutrients in foods. Food Res Int 26: 131-149 https://doi.org/10.1016/0963-9969(93)90069-U
  7. Oakenfull DG, Sidhu GS. 1990. Could saponins be a useful treatment for hypercholesterolaemia? Eur J Clin Nutr 44: 79-88
  8. Wu RT, Chiang HC, Fu WC, Chien KY, Chung YM, Horng LY. 1990. Formosanin-C, an immunomodulator with antitumor activity. Int J Immunopharmacol 12: 777-786 https://doi.org/10.1016/0192-0561(90)90042-L
  9. Tokuda H, Konoshima T, Kozuka M, Kimura T. 1991. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-promoted mouse skin papilloma by saponins. Oncology 48: 77-80 https://doi.org/10.1159/000226899
  10. MacDonald RS, Guo JY, Copeland J, Browning JD, Sleper D, Rottinghaus GE, Berhow MA. 2005. Environmental influences on isoflavones and saponins in soybean and their role in colon cancer. J Nutr 135: 1239-1242
  11. Kubo M, Matsuda H, Tani T, Namba K, Arichi S, Kitagawa I. 1984. Effect of soyasaponin on experimental disseminated intravascular coagulation I. Chem Pharm Bull 32: 1467-1471 https://doi.org/10.1248/cpb.32.1467
  12. Ohminami H, Kimura Y, Okuda H, Arichi S, Yoshikawa M, Kitagawa I. 1984. Effects of soyasaponin on liver imjury induced by highly peroxidized fat in rats. Planta Med 50: 440-441 https://doi.org/10.1055/s-2007-969760
  13. Yoshikoshi M, Yoshiki Y, Okubo K, Seto J, Sasaki Y. Prevention of hydrogen peroxide damage by soybean saponins to mouse fibroblasts. Planta Med 62: 252-255 https://doi.org/10.1055/s-2006-957871
  14. Kitagawa I, Yoshikawa M, Hayashi T, Taniyama T. 1984. Quantitative determination of soyasaponins in soybeans of various origins and soybean products by means of high performance liquid chromatography. Yakugaku Zasshi 104: 275-279 https://doi.org/10.1248/yakushi1947.104.3_275
  15. Ireland PA, Dziedzic SZ, Kearsley MW. 1986. Saponin content of soya and some commercial soya products by means of high-performance liquid chromatography of the sapogenins. J Sci Food Argic 37: 694-698 https://doi.org/10.1002/jsfa.2740370715
  16. Kim HJ, Hahm DH, Yang DC, Kim JH, Lee HJ, Shim I. 2005. Effect of crude saponin of Korean red ginseng on high-fat diet-induced obesity in the rat. J Pharmacol Sci 97: 124-131 https://doi.org/10.1254/jphs.FP0040184
  17. Han LK, Zheng YN, Xu BJ, Okuda H, Kimura Y. 2002. Saponins from Platycodi radix ameliorate high-fat diet-induced obesity mice. J Nutr 132: 2241-2245
  18. Karu N, Reifen R, Kerem Z. 2007. Weight gain reduction in mice fed Panax ginseng saponin, a pancreatic lipase inhibitor. J Argic Food Chem 55: 2824-2828 https://doi.org/10.1021/jf0628025
  19. Yeo KE, Cho SB, Kim WJ. 2003. Separation conditions of isoflavone from defatted soybean flour with using sorption resin. Food Engineering Progress 7: 235-241
  20. Park DJ, Ku KH, Kim SH. 1996. Characteristics and application of defatted soybean meal fractions obtained by microparticulation/air-classification. Korean J Food Sci Technol 28: 497-505
  21. Park KU, Wee JJ, Kim JY, Jeong CH, Kang KS, Cho YS, Seo KI. 2005. Anticancer and immuno-activity of edible crude saponin from soybean cake. J Korean Soc Food Sci Nutr 34: 1509-1513 https://doi.org/10.3746/jkfn.2005.34.10.1509
  22. Kim YS, Kim JS, Choi SU, Kim JS, Lee HS, Roh SH, Jeong YC, Kim YK, Ryu SY. 2005. Isolation of new saponin and cytotoxic effect of saponins from the root of Platycodon grandiflorum on human tumor cell lines. Planta Med 71: 563-566 https://doi.org/10.1055/s-2005-864161
  23. American Institute of Nutrition. 1977. Report of the American Institute of Nutrition Ad Hoc committee on standards for nutritional studies. J Nutr 107: 1340-1348
  24. Muller PH. 1977. A fully enzymatic triglyceride determination. J Clin Chem Clin Biochem 15: 457-464
  25. Richmond V. 1976. Use of cholesterol oxidase for assay of total and free cholesterol in serum continuous flow analysis. Clin Chem 22: 1579-1588
  26. Folch J, Mee L, Stanley GSH. 1975. A simple method for the isolation and purification of total lipid from animal tissues. J Biol Chem 226: 497-509
  27. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  28. Carl MN, Lakshmana MR, Porter JW. 1975. Fatty acid synthase from rat liver. Methods Enzymol 35: 37-44 https://doi.org/10.1016/0076-6879(75)35136-7
  29. Lazarow PB. 1981. Assay of peroxisomal β-oxidation of fatty acids. Methods Enzymol 72: 315-319 https://doi.org/10.1016/S0076-6879(81)72021-4
  30. Yoo SJ. 2008. Pharmacological treatment of obesity. J Korean Endocrine Soc 23: 223-233 https://doi.org/10.3803/jkes.2008.23.4.223
  31. Leonhardt M, Hrupka B, Langhans W. 2001. Effect of hydroxycitrate on food intake and body weight regain after a period of restrictive feedings in male rats. Physiol Behav 74: 191-196 https://doi.org/10.1016/S0031-9384(01)00547-9
  32. DeFronzo RA. 2004. Dysfunctional fat cells, lipotoxicity and type 2 diabetes. Int J Clin Pract 143: 9-21 https://doi.org/10.1111/j.1368-504X.2004.00389.x
  33. Banks WA. 2004. The many lives of leptin. Peptides 25: 331-338 https://doi.org/10.1016/j.peptides.2004.02.014
  34. Fruhbeck G. 2001. A heliocentric view of leptin. Pro Nutr Soc 60: 301-318 https://doi.org/10.1079/PNS200196
  35. Kim YW. 2007. Leptin resistance. J Korean Endocrine Soc 22: 311-317 https://doi.org/10.3803/jkes.2007.22.5.311
  36. Mark AL, Correia ML, Rahmouni K, Haynes WG. 2004. Loss of leptin actions in obesity: two concepts with cardiovascular implications. Clin Exp Hypertens 26: 629-636 https://doi.org/10.1081/CEH-200031948
  37. Thomas T, Burguera B, Melton LJ, Atkinson EJ, O'Fallon WM, Riggs BL, Khosla S. 2000. Relationship of serum leptin levels with body composition and sex steroid and insulin levels in men and women. Metabolism 49: 1278-1284 https://doi.org/10.1053/meta.2000.9519
  38. Lucas EA, Khalil DA, Daggy BP, Arjmandi BH. 2001. Ethanol-extracted soy protein isolate does not modulate serum cholesterol in Golden Syrian hamsters: a model of postmenopausal hypercholesterolemia. J Nutr 131: 211-214
  39. Ghasi S, Nwobodo E, Ofili JO. 2000. Hypocholesterolemic effects of crude extract of leaf of Moringa oleifera Lam in high-fat diet fed wistar rats. J Ethnopharmacol 69: 21-25 https://doi.org/10.1016/S0378-8741(99)00106-3
  40. Cho YS, Shon MY, Lee MK. 2007. Lipid-lowering action of powder and water extract of mulberry leaves in C57BL/6 mice fed high-fat diet. J Korean Soc Food Sci Nutr 36: 405-410 https://doi.org/10.3746/jkfn.2007.36.4.405
  41. Tian WX. 2006. Inhibition of fatty acid synthase by polyphenols. Curr Med Chem 13: 967-977 https://doi.org/10.2174/092986706776361012
  42. Eder K, Kirchgessner M. 1998. The effect of dietary vitamin E supply and a moderately oxidized oil on activities of hepatic lipogenic enzymes in rats. Lipids 33: 277-283 https://doi.org/10.1007/s11745-998-0206-x
  43. Portillo MP, Chavarri M, Duran D, Rodriguez VM, Macarulla MT. 2001. Differential effects of diets that provide different lipid sources on hepatic lipogenic activities in rats under ad libitum or restricted feeding. Nutrition 17: 467-473 https://doi.org/10.1016/S0899-9007(01)00513-5

Cited by

  1. Effect of Garcinia cambogia Extract-containing Dip-sauce for Meat on Lipid Accumulation and Body Weight Reduction in Rats Fed High-fat Diet vol.33, pp.2, 2013, https://doi.org/10.5851/kosfa.2013.33.2.276
  2. 금앵자 에탄올 추출물에 의한 3T3-L1 지방세포의 분화억제 효과와 그 메커니즘 규명 vol.44, pp.1, 2016, https://doi.org/10.4014/mbl.1511.11011