DOI QR코드

DOI QR Code

Three-dimensional finite element analysis on stress distribution of the mandibular implant-supported cantilever prostheses depending on the designs

임플란트 지지 하악 캔틸레버 보철물의 디자인에 따른 저작압 분산에 관한 삼차원 유한요소 분석

  • Ban, Jae-Hyurk (Department of Advanced Prosthodontics, Graduate School of Clinical Dentistry, Korea University) ;
  • Shin, Sang-Wan (Department of Advanced Prosthodontics, Graduate School of Clinical Dentistry, Korea University) ;
  • Kim, Sun-Jong (Department of Advanced Prosthodontics, Graduate School of Clinical Dentistry, Korea University) ;
  • Lee, Jeong-Yeol (Department of Advanced Prosthodontics, Graduate School of Clinical Dentistry, Korea University)
  • 반재혁 (고려대학교 임상치의학 대학원 고급보철학과) ;
  • 신상완 (고려대학교 임상치의학 대학원 고급보철학과) ;
  • 김선종 (고려대학교 임상치의학 대학원 고급보철학과) ;
  • 이정열 (고려대학교 임상치의학 대학원 고급보철학과)
  • Published : 2009.01.30

Abstract

Statement of problem: The position and length of cantilever influence on the stress distribution of implants, superstructure and bone. In edentulous mandible, implant-supported cantilever prostheses that based 4 or 6 implants between mental foramens has been attempted. Excessive bite force loaded at cantilever prosthesis causes bone resorption and breakage of superstructure prosthesis around posterior implants. To complement the cantilever length of conventional prosthesis, In 1992, (McCartney) introduced "cantilever-rest-implant" and Malo reported "All-on-Four" in 2003. Purpose: Analyze and compare the stress distribution of conventional cantilever prostheses with rest implant and All-on-$Four^{TM}$ implant prostheses. Material and method: The external loads(300 N vertically, 75 N horizontally) are applied to first molar area. The stress value, stress distribution and aspect of stress dispersion are analyzed by three-dimensional finite element analysis program, ANSYS ver. 10.0. Results: 1. The rest implant and "All-on-Four" implant system are superior to conventional cantilever prostheses to reduce stress on the bone and the superstructure around implants. 2. The rest implant was of the greatest advantage to stress distribution on bone, implant and superstructure. 3. With same number of implants, distally tilted implants are preferred to conventional cantilever prostheses for reducing the length of cantilever.

연구목적: 캔틸레버의 위치와 길이는 임플란트와 보철물 또한 주위 골조직의 응력분포에 중요한 영향을 미친다. 하악 무치악의 경우 기존에는 양측 이공사이에 4-6개의 임플란트를 식립하고 상부보철물을 캔틸레버형으로 제작해왔는데 캔틸레버 부위에 무리한 하중이 작용하게 되면 응력의 집중과 굽힘 현상으로 인하여 최후방 임플란트 부위의 지지골 파괴와 임플란트 및 상부 보철물의 파절을 초래했다. 이러한 캔틸레버의 약점을 보완하기 위해 1992년 McCartney가 Rest implant 개념을 2003년에는 $Mal{\acute{o}}$ 등이 All-on-Four implant 개념을 소개하여 기존 보철물의 캔틸레버 길이를 줄이려고 노력하였다. 재료 및 방법: 기존의 캔틸레버형 보철물과 rest implant, All-on-Four implant 시스템을 삼차원 모델링하여 하중을 제 1대구치 부위에 수직으로 300 N, 수평으로 설측에서 협측으로 75 N을 가하여 지지골과 임플란트, 상부보철물에 발생하는 응력의 크기와 분포 및 분산양상을 유한요소 해석 프로그램인 ANSYS (Ver. 10.0, Swanson Analysis System Inc., USA)를 이용하여 분석하였다. 결과: 1. 레스트 임플란트 및 All-on-Four 임플란트법은 기존 방법에 비해 하악골과 상부 보철물의 응력 분산에 크게 영향을 미치는 것으로 나타났다. 2. 지지골, 임플란트, 상부 보철물에서의 응력분산은 레스트 임플란트가 가장 우수한 것으로 나타났다. 3. 같은 개수의 임플란트인 경우 후방 임플란트를 경사시켜 캔틸레버의 양을 줄이는 것이 기존 방식에 비해 저작압 분산에 유리하다.

Keywords

References

  1. Branemark PI. Osseointegration and its experimental background. J Prosthet Dent 1983;50:399-410 https://doi.org/10.1016/S0022-3913(83)80101-2
  2. Branemark PI, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969;3:81-100 https://doi.org/10.3109/02844316909036699
  3. Weinberg LA, Kruger B. Biomechanical considerations when combining tooth-supported and implant-supported prostheses. Oral Surg Oral Med Oral Pathol 1994;78:22-7 https://doi.org/10.1016/0030-4220(94)90112-0
  4. Holmes DC, Grigsby WR, Goel VK, Keller JC. Comparison of stress transmission in the IMZ implant sys-tem with polyoxymethylene or titanium intramobile element: a finite element stress analysis. Int J Oral Maxillofac Implants 1992;7:450-8
  5. Rangert B, Jemt T, Jorneus L. Forces and moments on B°ranemark implants. Int J Oral Maxillofac Implants 1989;4:241-7
  6. Richter EJ. Basic biomechanics of dental implants in prosthetic dentistry. J Prosthet Dent 1989;61:602-9 https://doi.org/10.1016/0022-3913(89)90285-0
  7. Branemark PI. Osseointegration and its experimental background. J Prosthet Dent 1983;50:399-410 https://doi.org/10.1016/S0022-3913(83)80101-2
  8. Van Rossen IP, Braak LH, de Putter C, de Groot K. Stressabsorbing elements in dental implants. J Prosthet Dent 1990;64:198-205 https://doi.org/10.1016/0022-3913(90)90179-G
  9. Van Zyl PP, Grundling NL, Jooste CH, Terblanche E. Three-dimensional finite element model of a human mandible incorporating six osseointegrated implants for stress analysis of mandibular cantilever prostheses. Int J Oral Maxillofac Implants 1995;10:51-7
  10. Zarb GA, Schmitt A. The longitudinal clinical effectiveness of osseointegrated dental implants: the Toronto study. Part III: Problems and complications encountered. J Prosthet Dent 1990;64:185-94 https://doi.org/10.1016/0022-3913(90)90177-E
  11. McCartney JW. Cantilever rests: an alternative to the unsupported distal cantilever of osseointegrated implant-supported prostheses for the edentulous mandible. J Prosthet Dent 1992;68:817-9 https://doi.org/10.1016/0022-3913(92)90209-S
  12. Benzing UR, Gall H, Weber H. Biomechanical aspects of two different implant-prosthetic concepts for edentulous maxillae. Int J Oral Maxillofac Implants 1995;10:188-98
  13. Lewinstein I, Banks-Sills L, Eliasi R. Finite element analysis of a new system (IL) for supporting an implant-retained cantilever prosthesis. Int J Oral Maxillofac Implants 1995;10:355-66
  14. Malo P, Rangert B, Nobre M. 'All-on-Four' immediate-function concept with Branemark System implants for completely edentulous mandibles: a retrospective clinical study. Clin Implant Dent Relat Res 2003;5:2-9 https://doi.org/10.1111/j.1708-8208.2003.tb00010.x
  15. Cho C, Shin SW, Kwon JJ. Three dimensional finite element analysis on the mandibular cantilevered prosthesis supported by implants. J Korean Acad Prosthodont 2000;38:724-43
  16. Jang BS, Kim CW, Kim YS. A three dimensional finite element stress analysis of osseointegrated prosthesis according to the location and length of cantilever. J Korean Acad Prosthodont 1996;34:501-32
  17. Adell R, Lekholm U, Rockler B, Branemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10:387-416 https://doi.org/10.1016/S0300-9785(81)80077-4
  18. De Boever JA, McCall WD Jr, Holden S, Ash MM Jr. FFunctional occlusal forces: an investigation by telemetry. J Prosthet Dent 1978;40:326-33 https://doi.org/10.1016/0022-3913(78)90042-2
  19. Ericsson I, Lekholm U, Branemark PI, Lindhe J, Glantz PO, Nyman S.A clinical evaluation of fixed-bridge restorations supported by the combination of teeth and osseointegrated titanium implants. J Clin Periodontol 1986;13:307-12 https://doi.org/10.1111/j.1600-051X.1986.tb02227.x
  20. Mathews MF, Breeding LC, Dixon DL, Aquilino SA. The effect of connector design on cement retention in an implant and natural tooth-supported fixed partial denture. J Prosthet Dent 1991;65:822-7 https://doi.org/10.1016/S0022-3913(05)80021-6
  21. Van Steenberghe D. A retrospective multicenter evaluation of the survival rate of osseointegrated fixtures supporting fixed partial prostheses in the treatment of partial edentulism. J Prosthet Dent 1989;61:217-23 https://doi.org/10.1016/0022-3913(89)90378-8
  22. Borchers L, Reichart P. Three-dimensional stress distribution around a dental implant at different stages of interface development. J Dent Res 1983;62:155-9 https://doi.org/10.1177/00220345830620021401
  23. Clelland NL, Ismail YH, Zaki HS, Pipko D. Three-dimensional finite element stress analysis in and around the Screw-Vent implant. Int J Oral Maxillofac Implants 1991;6:391-8
  24. Cook SD, Weinstein AM, Klawitter JJ. A three-dimensional finite element analysis of a porous rooted Co-Cr-Mo alloy dental implant. J Dent Res 1982;61:25-9 https://doi.org/10.1177/00220345820610010501
  25. Davis DM, Zarb GA, Chao YL. Studies on frameworks for osseointegrated prostheses: Part 1. The effect of varying the number of supporting abutments. Int J Oral Maxillofac Implants 1988;3:197-201
  26. Skalak R. Biomechanical considerations in osseointegrated prostheses. J Prosthet Dent 1983;49:843-8 https://doi.org/10.1016/0022-3913(83)90361-X
  27. Kim DW, Kim YS. A study on the osseointegrated prostesis using three dimensional finite element method. J Korean Acad Prosthodont 1991;29:167-213
  28. Lee DO, Chung CH, Cho KZ. A study on the three dimensional finite element analysis of the stresses according to the curvature of arch and placement of implants. J Korean Acad Prosthodont 1995;33:98-129
  29. Khatami AH, Smith CR. 'All-on-Four' immediate function concept and clinical report of treatment of an edentulous mandible with a fixed complete denture and milled titanium framework. J Prosthodont 2008;17:47-51 https://doi.org/10.1111/j.1532-849X.2007.00246.x
  30. Francetti L, Agliardi E, Testori T, Romeo D, Taschieri S, Fabbro MD. Immediate rehabilitation of the mandible with fixed full prosthesis supported by axial and tilted implants: interim results of a single cohort prospective study. Clin Implant Dent Relat Res 2008;10:255-63 https://doi.org/10.1111/j.1708-8208.2008.00090.x
  31. Testori T, Del Fabbro M, Capelli M, Zuffetti F, Francetti L, Weinstein RL. Immediate occlusal loading and tilted implants for the rehabilitation of the atrophic edentulous maxilla: 1-year interim results of a multicenter prospective study. Clin Oral Implants Res 2008;19:227-32 https://doi.org/10.1111/j.1600-0501.2007.01472.x
  32. Malo P, Rangert B, Nobre M. All-on-4 immediate-function concept with Branemark System implants for completely edentulous maxillae: a 1-year retrospective clinical study. Clin Implant Dent Relat Res 2005;7:S88-94 https://doi.org/10.1111/j.1708-8208.2005.tb00080.x
  33. White SN, Caputo AA, Anderkvist T. Effect of cantilever length on stress transfer by implant-supported prostheses. J Prosthet Dent 1994;71:493-9 https://doi.org/10.1016/0022-3913(94)90189-9
  34. Lim JK. Accuracy estimation and control methods of finite element solutions. Trans KSME 1994;34:502-9
  35. Byun SK, Park WH, Lee YS. Three dimensional finite element stress analysis of five different taper design implant systems J Korean Acad Prosthodont 2006;44:584-93
  36. Bergman B. Evaluation of the results of treatment with osseointegrated implants by the Swedish National Board of Health and Welfare. J Prosthet Dent 1983;50:114-5 https://doi.org/10.1016/0022-3913(83)90176-2
  37. Misch CM, Ismail YH. Finite element stress analysis of tooth-to-implant fixed partial denture designs. J Prosthodont 1993;2:83-92 https://doi.org/10.1111/j.1532-849X.1993.tb00388.x
  38. Haraldson T, Carlsson GE. Bite force and oral function in patients with osseointegrated oral implants. Scand J Dent Res 1977;85:200-8 https://doi.org/10.1111/j.1600-0722.1977.tb00554.x
  39. Siegele D, Soltesz U. Numerical investigations of the influence of implant shape on stress distribution in the jaw bone. Int J Oral Maxillofac Implants 1989;4:333-40
  40. Sertgoz A. Finite element analysis study of the effect of superstructure material on stress distribution in an implantsupported fixed prosthesis. Int J Prosthodont 1997;10:19-27
  41. Rieger MR, Adams WK, Kinzel GL. A finite element survey of eleven endosseous implants. J Prosthet Dent 1990;63:457-65 https://doi.org/10.1016/0022-3913(90)90238-8
  42. Rieger MR, Fareed K, Adams WK, Tanquist RA. Bone stress distribution for three endosseous implants. J Prosthet Dent 1989;61:223-8 https://doi.org/10.1016/0022-3913(89)90379-X
  43. Clelland NL, Ismail YH, Zaki HS, Pipko D. Three-dimensional finite element stress analysis in and around the Screw-Vent implant. Int J Oral Maxillofac Implants 1991;6:391-8
  44. Davis DM, Rimrott R, Zarb GA. Studies on frameworks for osseointegrated prostheses: Part 2. The effect of adding acrylic resin or porcelain to form the occlusal superstructure. Int J Oral Maxillofac Implants 1988;3:275-80
  45. Burr DB, Martin RB, Schaffler MB, Radin EL. Bone remodeling in response to in vivo fatigue microdamage. J Biomech 1985;18:189-200 https://doi.org/10.1016/0021-9290(85)90204-0
  46. Jemt T, Lekholm U, Adell R. Osseointegrated implants in the treatment of partially edentulous patients: a preliminary study on 876 consecutively placed fixtures. Int J Oral Maxillofac Implants 1989;4:211-7
  47. Lindquist LW, Rockler B, Carlsson GE. Bone resorption around fixtures in edentulous patients treated with mandibular fixed tissue-integrated prostheses. J Prosthet Dent 1988;59:59-63 https://doi.org/10.1016/0022-3913(88)90109-6
  48. Brunski JB, Moccia AF Jr, Pollack SR, Korostoff E, Trachtenberg DI. The influence of functional use of endosseous dental implants on the tissue-implant interface. I. Histological aspects. J Dent Res 1979;58:1953-69 https://doi.org/10.1177/00220345790580100201

Cited by

  1. Finite element modeling technique for predicting mechanical behaviors on mandible bone during mastication vol.4, pp.4, 2012, https://doi.org/10.4047/jap.2012.4.4.218
  2. Finite element analysis on the connection types of abutment and fixture vol.50, pp.2, 2012, https://doi.org/10.4047/jkap.2012.50.2.119