DOI QR코드

DOI QR Code

Hydroxyapatite-Zirconia Composite Thin Films Showing Improved Mechanical Properties and Bioactivity

  • Kim, Min-Seok (Department of Materials Science and Engineering, Korea University) ;
  • Ryu, Jae-Jun (Department of Prosthodontics, Medical School, Korea University) ;
  • Sung, Yun-Mo (Department of Materials Science and Engineering, Korea University)
  • Published : 2009.02.27

Abstract

Nano-crystalline hydroxyapatite (HAp) films were formed at the Ti surface by a single-step microarc oxidation (MAO), and HAp-zirconia composite (HZC) films were obtained by subsequent chemical vapor deposition (CVD) of zirconia onto the HAp. Through the CVD process, zero- and one-dimensional zirconia nanostructures having tetragonal crystallinity (t-ZrO2) were uniformly distributed and well incorporated into the HAp crystal matrix to form nanoscale composites. In particular, (t-$ZrO_2$) was synthesized at a very low temperature. The HZC films did not show secondary phases such as tricalcium phosphate (TCP) and tetracalcium phosphate (TTCP) at relatively high temperatures. The most likely mechanism for the formation of the t-$ZrO_2$ and the pure HAp at the low processing temperature was proposed to be the diffusion of $Ca^{2+}$ ions. The HZC films showed increasing micro-Vickers hardness values with increases in the t-$ZrO_2$ content. The morphological features and phase compositions of the HZC films showed strong dependence on the time and temperature of the CVD process. Furthermore, they showed enhanced cell proliferation compared to the $TiO_2$ and HAp films most likely due to the surface structure change.

Keywords

References

  1. Y. Z. Yang and J. L. Ong, J. Biomed. Mater. Res., 64, 509(2003) https://doi.org/10.1002/jbm.a.10431
  2. M. M. -Hukovic, E. Tkalcec, A. Kwoka and J. Piljac, Surface Coat. Technol., 165, 40(2003) https://doi.org/10.1016/S0257-8972(02)00732-6
  3. X. Nie, A. Leyland, A. Matthews, J. C. Jiang and E. I. Meletis, J. Biomed. Mater. Res., 57, 612(2001) https://doi.org/10.1002/1097-4636(20011215)57:4<612::AID-JBM1208>3.0.CO;2-H
  4. L. L. Hench and J Wilson, Science, 226, 630(1984) https://doi.org/10.1126/science.6093253
  5. P. Ducheyne, W. Van Raemdonck, J. C. Heughebaert and M. Heughebaert, Biomater., 7, 97(1986) https://doi.org/10.1016/0142-9612(86)90063-3
  6. T. Kokubo, H. M. Kim and M. Kawashita, Biomater., 24, 2161(2003) https://doi.org/10.1016/S0142-9612(03)00044-9
  7. P. Ducheyne, S. Radin, M. Heughebaert and J. C. Heughebaert, Biomater., 11, 244(1990) https://doi.org/10.1016/0142-9612(90)90005-B
  8. M. Svehla, P. Morberg, B. Zicat, W. Bruce, D. Sonnabend and W. R. Walsh, J. Biomed. Mater. Res., 51, 15(2000) https://doi.org/10.1002/(SICI)1097-4636(200007)51:1<15::AID-JBM3>3.0.CO;2-9
  9. Y. M. Sung, Y. K. Shin, Y. W. Song, A. I. Mamaev and V. A. Mamaeva, Crystal Growth Des., 5, 29 (2005) https://doi.org/10.1021/cg049869+
  10. P. A. Ramires, A. Romito, F. Cosentino and E. Milella, Biomater., 22, 1467(2001) https://doi.org/10.1016/S0142-9612(00)00269-6
  11. Y. Han, J. F. Sun and X. Huang, Electrochem. Commun., 10, 510 (2008) https://doi.org/10.1016/j.elecom.2008.01.026
  12. T. Kokubo, S. Ito, Z. T. Hayashi, S. Sakka, T. Kitsugi and T. Yamamuro, J. Biomed. Mater. Res., 24, 331(1990) https://doi.org/10.1002/jbm.820240306
  13. W. Holand, W. Vogel, K. Naumann and J. Gummel, J. Biomed. Mater. Res., 19, 303(1985) https://doi.org/10.1002/jbm.820190311
  14. A. Clifford and R. Hill, J. Non-Cryst. Sol., 196, 346(1996) https://doi.org/10.1016/0022-3093(95)00611-7
  15. W. Holand, J. Non-Cryst. Sol., 219, 192(1997) https://doi.org/10.1016/S0022-3093(97)00329-3
  16. B. Y. Cjou, E. Chang, S. Y. Ya and J. M. Chen, J. Am. Ceram. Soc., 85, 661(2002) https://doi.org/10.1111/j.1151-2916.2002.tb00147.x
  17. Y. M. Sung, Y. K. Shin and J. J. Ryu, Nanotechnology, 18, 065602(2007) https://doi.org/10.1088/0957-4484/18/6/065602
  18. L. M. Sun, C. C. Berndt, K. A. Gross and A. Kucuk, J. Biomed. Mater. Res., 58, 570(2001) https://doi.org/10.1002/jbm.1056
  19. Y. C. Yang and E. Chang, Biomater., 22, 1827(2001) https://doi.org/10.1016/S0142-9612(00)00364-1
  20. X. Nie, A. Leyland and A. Matthew, Surf. Coat. Technol., 125, 407(2000) https://doi.org/10.1016/S0257-8972(99)00612-X
  21. L. H. Li, Y. M. Kong, H. W. Kim, H. E. Kim, S. J. Heo and J. Y. Koak, Biomater., 25, 2867(2004) https://doi.org/10.1016/j.biomaterials.2003.09.048
  22. M. S. Kim, J. J. Ryu and Y. M. Sung, Electrochem. Commun., 9, 1886(2007) https://doi.org/10.1016/j.elecom.2007.04.023
  23. W. H. Song, Y. K. Jun, Y. Han and S. H. Hong, Biomater., 25, 3341(2004) https://doi.org/10.1016/j.biomaterials.2003.09.103
  24. R. H. J. Hannik, P. M. Kelly and B. C. Muddle, J. Am. Ceram. Soc., 83, 461(2000) https://doi.org/10.1111/j.1151-2916.2000.tb01221.x