DOI QR코드

DOI QR Code

Effect of CH4 Concentration on the Dielectric Properties of SiOC(-H) Film Deposited by PECVD

CH4 농도 변화가 저유전 SiOC(-H) 박막의 유전특성에 미치는 효과

  • Shin, Dong-Hee (Dept. of Materials Science and Engineering, Korea University) ;
  • Kim, Jong-Hoon (Dept. of Materials Science and Engineering, Korea University) ;
  • Lim, Dae-Soon (Dept. of Materials Science and Engineering, Korea University) ;
  • Kim, Chan-Bae (Preceding Process Division, Hynix Semiconductor Inc)
  • 신동희 (고려대학교 신소재공학과) ;
  • 김종훈 (고려대학교 신소재공학과) ;
  • 임대순 (고려대학교 신소재공학과) ;
  • 김찬배 (하이닉스 반도체 연구개발부)
  • Published : 2009.02.27

Abstract

The development of low-k materials is essential for modern semiconductor processes to reduce the cross-talk, signal delay and capacitance between multiple layers. The effect of the $CH_4$ concentration on the formation of SiOC(-H) films and their dielectric characteristics were investigated. SiOC(-H) thin films were deposited on Si(100)/$SiO_2$/Ti/Pt substrates by plasma-enhanced chemical vapor deposition (PECVD) with $SiH_4$, $CO_2$ and $CH_4$ gas mixtures. After the deposition, the SiOC(-H) thin films were annealed in an Ar atmosphere using rapid thermal annealing (RTA) for 30min. The electrical properties of the SiOC(-H) films were then measured using an impedance analyzer. The dielectric constant decreased as the $CH_4$ concentration of low-k SiOC(-H) thin film increased. The decrease in the dielectric constant was explained in terms of the decrease of the ionic polarization due to the increase of the relative carbon content. The spectrum via Fourier transform infrared (FT-IR) spectroscopy showed a variety of bonding configurations, including Si-O-Si, H-Si-O, Si-$(CH_3)_2$, Si-$CH_3$ and $CH_x$ in the absorbance mode over the range from 650 to $4000\;cm^{-1}$. The results showed that dielectric properties with different $CH_4$ concentrations are closely related to the (Si-$CH_3$)/[(Si-$CH_3$)+(Si-O)] ratio.

Keywords

References

  1. C. S. Yang and C. K. Choi, J. Kor. Phys. Soc., 51(1), 1 (2005)
  2. H. W. Lee and S. K. Min, Polymer Scie. Tech., 16(1), 29 (2005)
  3. L. L. Chapelon, V. Arnal , M. Broekaart and L. G. Gosset, Microelectronic Eng., 76, 1 (2004) https://doi.org/10.1016/j.mee.2004.07.012
  4. Y. H. Kim and H. J. Kim, Ceramist., 4(1), 5 (2001)
  5. C. Y. Kim, S. H. Kim, R. Navamathavan, C. K. Choi and W. Y. Jeung, Thin Solid Films., 516, 340 (2007) https://doi.org/10.1016/j.tsf.2007.06.097
  6. O. Teresa, IEEK., 42SD (6), 17 (2005)
  7. G. Das, G. Mariotto and A. Quaranta, Mater. Sci. Semicond. Proc., 7, 295 (2004) https://doi.org/10.1016/j.mssp.2004.09.121
  8. A. Grill and D. A. Neumayer, J. Appl. Phys., 94(10), 15 (2003) https://doi.org/10.1063/1.1618358
  9. C. S. Yang, Y. H. Yu, H. J. Lee, K. M. Lee and C. K. Choi, Thin Solid Films., 475, 150 (2005) https://doi.org/10.1016/j.tsf.2004.07.019
  10. D. Das, M. Jana and A.K. Barua, Sol. Energy Mater. Sol. Cells., 63, 285 (2000) https://doi.org/10.1016/S0927-0248(00)00035-0
  11. O. Gorblg, S. Nehlsen and J. Mtiller, J. Membr. Sci., 138, 115 (1998) https://doi.org/10.1016/S0376-7388(97)00215-9
  12. J. K. Kim and T. W. Yeu, Kor. Chem. Eng. Res., 42(2), 248 (2006)