DOI QR코드

DOI QR Code

Effect of Annealing on a-Si:H Thin Films Fabricated by RF Magnetron Sputtering

RF 스퍼터를 이용하여 제작된 a-Si:H 박막의 어닐링 효과에 관한 연구

  • Kim, Do-Yun (School of New Materials Science and Engineering, Yonsei University) ;
  • Kim, In-Soo (School of New Materials Science and Engineering, Yonsei University) ;
  • Choi, Se-Young (School of New Materials Science and Engineering, Yonsei University)
  • 김도윤 (연세대학교 신소재공학과) ;
  • 김인수 (연세대학교 신소재공학과) ;
  • 최세영 (연세대학교 신소재공학과)
  • Published : 2009.02.27

Abstract

The effect of annealing under argon atmosphere on hydrogenated amorphous silicon (a-Si:H) thin films deposited at room temperature and $300^{\circ}C$ using Radio Frequency (RF) magnetron sputtering has been investigated. For the films deposited at room temperature, there was not any increase in hydrogen content and optical band gap of the films, and as a result, quality of the films was not improved under any annealing conditions. For the films deposited at $300^{\circ}C$, on the other hand, significant increases in hydrogen content and optical band gap were observed, whereas values of microstructure parameter and dark conductivity were decreased upon annealing below $300^{\circ}C$. In this study, it was proposed that the Si-HX bonding strength is closely related to deposition temperature. Also, the improvement in optical, electrical and structural properties of the films deposited at $300^{\circ}C$ was originated from thermally activated hydrogen bubbles, which were initially trapped at microvoids in the films.

Keywords

References

  1. K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto and A. Nakajima, J. Non-Cryst. Solids, 266(2), 1082 (2000) https://doi.org/10.1016/S0022-3093(99)00907-2
  2. H. Stiebig, E. Moulin and B. Rech, Thin solid films, 515(19), 7522 (2007) https://doi.org/10.1016/j.tsf.2006.11.126
  3. C. H. Lee, A. Sazonov and A. Nathan, Appl. Phys. Lett., 86, 222106-1 (2005) https://doi.org/10.1063/1.1942641
  4. P. Danesh, B. Pantchev, B. Schmidt and D. Grambole, Semicond. Sci. Tech., 19(12), 1422 (2004) https://doi.org/10.1088/0268-1242/19/12/016
  5. J. Tauc, R. Grigorovici and A. Vancu, Phys. Stat. Sol., 15, 627 (1966) https://doi.org/10.1002/pssb.19660150224
  6. G. Lucovsky, R. J. Nemanich and J. C. Knights, Phys. Rev. B, 19(4), 2064 (1979) https://doi.org/10.1103/PhysRevB.19.2064
  7. M. H. Brodsky, M. Cardona and J. J. Cuomo, Phys. Rev. B, 16(8), 3556 (1977) https://doi.org/10.1103/PhysRevB.16.3556
  8. A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford and N. Maley, Phys. Rev. B, 45(23), 13367 (1992) https://doi.org/10.1103/PhysRevB.45.13367
  9. H. Rinnert, M. Vergnat, G. Marchal and A. Bruneau, J. Appl. Phys., 83(2), 1103 (1998) https://doi.org/10.1063/1.366800
  10. A. Deneuville, A. Mini and J. C. Bruyere, Solid State Phys., 14(30), 4531 (1981) https://doi.org/10.1088/0022-3719/14/30/017
  11. Y. J. Chabal and C. K. N. Patel, Phys. Rev. Lett., 53(18), 1771 (1984) https://doi.org/10.1103/PhysRevLett.53.1771
  12. W. Futako, T. Kamiya, C. M. Formann and I. Shimizu, J. Non-Cryst. Solids, 266(1), 630 (2000) https://doi.org/10.1016/S0022-3093(99)00756-5
  13. C. M. Fortmann, Phys. Rev. Lett., 81(17), 3683 (1998) https://doi.org/10.1103/PhysRevLett.81.3683
  14. K. Tanaka, E. Maruyama, T. Shimada, H. Okamoto and T. Sato, Amorphous Silicon, p.106, John Wiley & Sons, England, (1999)
  15. G. D. Cody, C. R. Wronski, B. Abeles, R. B. Stephens and B. Brooks, Sol. Cells, 2(3), 227 (1980) https://doi.org/10.1016/0379-6787(80)90028-9
  16. S. H. Won, J. K. Chung, C. B. Lee, H. C. Nam, J. H. Hur and J. Jang,, J. Electrochem. Soc., 151(3), G167 (2004) https://doi.org/10.1149/1.1643742