DOI QR코드

DOI QR Code

Simultaneous Measurement of Thickness and Refractive Index of Transparent Material Using a Collimated Beam Having a Finite Radius

유한 반경의 시준 광속을 이용한 투명 매질의 두께와 굴절률의 동시 측정

  • Park, Dae-Seo (School of Information and Communication Engineering, Inha University) ;
  • O, Beom-Hoan (School of Information and Communication Engineering, Inha University) ;
  • Park, Se-Geun (School of Information and Communication Engineering, Inha University) ;
  • Lee, El-Hang (School of Information and Communication Engineering, Inha University) ;
  • Lee, Seung-Gol (School of Information and Communication Engineering, Inha University)
  • 박대서 (인하대학교 정보통신공학부) ;
  • 오범환 (인하대학교 정보통신공학부) ;
  • 박세근 (인하대학교 정보통신공학부) ;
  • 이일항 (인하대학교 정보통신공학부) ;
  • 이승걸 (인하대학교 정보통신공학부)
  • Published : 2009.02.25

Abstract

We propose a new measuring technique based on optical low-coherence reflectometry that enables us to determine the refractive index and the geometrical thickness of a transparent sample by one-time scanning only. By passing a collimated beam having a finite size through the edge of the sample, the refractive index and the geometrical thickness can be determined simultaneously from the comparison of interferograms generated by two kinds of reflected beams. In this study, a refractive index could be determined with the accuracy of $10^{-3}$, and its accuracy would be enhanced by using a more precise translator and a thicker sample.

본 연구에서는 저간섭성 반사계(Optical low-coherence reflectometry)를 이용하여 한 번의 측정으로 투명 시료의 두께와 굴절률을 동시에 측정하는 기술을 제안하였다. 제안된 방법은 유한 반경을 가진 시준된 광속을 시료의 경계 영역으로 입사시키는 것으로써, 시료가 있는 부분과 없는 부분으로부터 반사된 광속에 의한 간섭 무늬들을 한 번에 획득할 수 있다. 한번의 측정을 통해 얻어진 두 종류 간섭 무늬들의 상대적인 위치 차이를 이용하여 시료의 두께와 굴절률을 동시에 결정할 수 있었다. 굴절률의 정밀도는 이송장치의 위치 정밀도가 향상되고, 시료의 두께가 두꺼워 질수록 개선될 수 있으며, 본 실험에서는 약 $10^{-3}$의 정밀도로 굴절률을 결정할 수 있었다.

Keywords

References

  1. S. Singh, “Refractive Index Measurement and its Applications,” Phys. Scr., vol. 65, pp. 167-180, 2002 https://doi.org/10.1238/Physica.Regular.065a00167
  2. W. V. Sorin and D. F. Gray, “Simultaneous Thickness and Group Index Measurement Using Optical Low-Coherence Reflectometry,” IEEE Photonics Technol. Lett., vol. 4, no. 1, pp. 105-107, 1992 https://doi.org/10.1109/68.124892
  3. D. F. Murphy and D. A. Flavin, “Dispersion-insensitive measurement of thickness and group refractive index by low-coherence interferometry,” Appl. Opt., vol. 39, no. 25, pp. 4607-4615, 2000 https://doi.org/10.1364/AO.39.004607
  4. T. Fukano and I. Yamaguchi, “Simultaneous measurement of thicknesses and refractive indices of multiple layers by a low-coherence confocal interference microscope,” Opt. Lett., vol. 21, no. 23, pp. 1942-1944, 1996 https://doi.org/10.1364/OL.21.001942
  5. M. Ohmi, T. Shiraishi, H. Tajiri, and M. Haruna, “Simultaneous Measurement of Refractive Index and Thickness of Transparent Plates by Low Coherence Interferometry,” Opt. Rev., vol. 4, no. 4, pp. 507-515, 1997 https://doi.org/10.1007/s10043-997-0507-1
  6. T. Fukano and I. Yamaguchi, “Separation of measurement of the refractive index and the geometrical thickness by use of a wavelength-scanning interferometer with a confocal microscope,” Appl. Opt., vol. 38, no. 19, pp. 4065-4073, 1999 https://doi.org/10.1364/AO.38.004065
  7. M. Haruna, M. Ohmi, T. Mitsuyama, H. Tajiri, H. Maruyama, and M. Hashimoto, “Simultaneous measurement of the phase and group indices and the thickness of transparent plates by low-coherence,” Opt. Lett., vol. 23, no. 12, pp. 966-968, 1998 https://doi.org/10.1364/OL.23.000966
  8. H. Maruyama, T. Mitsuyama, M. Ohmi, and M. Haruna, “Simultaneous Measurement of Refractive Index and Thickness by Low Coherence Interferometry Considering Chromatic Dispersion of Index,” Opt. Rev., vol. 7, no. 5, pp. 468-472, 2000 https://doi.org/10.1007/s10043-000-0468-0
  9. M. Ohmi, Y. Ohnishi, K. Yoden, and M. Haruna, “In Vitro Simultaneous Measurement of Refractive Index and Thickness of Biological Tissue by the Low Coherence,” IEEE Trans. Biomed. Eng., vol. 47, no. 9, pp. 1266-1270, 2000 https://doi.org/10.1109/10.867961
  10. H. M., S. Inoue, T. Mitsuyama, M. Ohmi, and M. Haruna, “Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness,” Appl. Opt., vol. 41, no. 7, pp. 1315-1322, 2002 https://doi.org/10.1364/AO.41.001315
  11. K. Takada, I. Yokohama, K. Chida, and J. Noda, “New measurement system for fault location in optical waveguide devices based on an interferometric technique,” Appl. Opt., vol. 26, no. 9, pp. 1603-1606, 1987 https://doi.org/10.1364/AO.26.001603
  12. K. Takada, “Analysis of Polarization Dependence of Optical Low Coherence Reflectometry Using an Active Faraday Rotator,” J. Lightwave Technol., vol. 21, no. 11, pp. 2916-2922, 2003 https://doi.org/10.1109/JLT.2003.817712
  13. H. D. Ford, R. Beddows, P. Casaubieilh, and R. P. Tatam, “Comparative signal-to-noise analysis of fibre-optic based optical coherence tomography systems,” J. Mod. Opt., vol. 52, no. 14, pp. 1965-1979, 2005 https://doi.org/10.1080/09500340500106774
  14. R. Windecker, P. Haible, and H. J. Tiziani, “Fast coherence scanning interferometry for measuring smooth, rough and spherical surfaces,” J. Mod. Opt., vol. 42, no. 10, pp. 2059-2069, 1995 https://doi.org/10.1080/09500349514551791

Cited by

  1. Air Gap Measurement between Substrates Using Confocal Technique vol.20, pp.4, 2009, https://doi.org/10.3807/KJOP.2009.20.4.207
  2. Absolute refractive index measurement method over a broad wavelength region based on white-light interferometry vol.49, pp.5, 2010, https://doi.org/10.1364/AO.49.000910