DOI QR코드

DOI QR Code

Lossless Linear Polarization Rotator by Using a ECB Liquid Crystal Cell and a Quarter Wave Plate

ECB 액정 셀과 1/4 파장판을 이용하여 구성한 무손실 선형편광 회전기

  • Jo, Jae-Heung (Department of Optics and Electromagnetics, Hannam University)
  • 조재흥 (한남대학교, 이과대학, 광.전자물리학과)
  • Published : 2009.02.25

Abstract

We make a simple electrically controllable linear polarization rotator over $360^{\circ}$ without loss by using a thick ECB(electrically controlled birefringence) liquid crystal cell and a quarter wave plate at 514.5 nm wavelength. Its operating principle can be analyzed and explained by using simple polarization analysis and experimental data. We demonstrate that the degree of polarization of the rotator is 0.964 and the temporal variation for 1 week lies within ${\pm}1$ degree. We can easily solve the problem of nonlinearity of the dependence of the rotational angle of linear polarization on the applied voltage by changing the utilized voltage range or its fitting curve.

파장 514.5 nm에서 8.4 um 두께의 ECB(Electically Controlled Birefringenence) 액정 셀과 1/4 파장판을 이용하여 간단하게 360도 이상으로 선형편광의 방향을 광손실없이 자유롭게 바꿀 수 있는 선형편광 회전기를 제안하고 이를 구현하였다. 이 선형편광 회전기의 편광도는 0.964이며, 1주일간의 시간적 변화도 ${\pm}1$도 정도로 시간적 안정성이 매우 뛰어남을 확인하였다. 이 선형편광기의 전압 대회전각의 비선형성 문제는 사용할 전압범위를 바꾸거나 이 선형편광 회전기의 회전각에 대한 피팅곡선을 사용하면 쉽게 해결할 수 있다.

Keywords

References

  1. Eugene Hecht, Optics, 4th ed. (Addison Wesley, New York, 2002), pp. 325-357
  2. Amnon Yariv, Quantum Electronics, 3rd ed. (John Wiley & Sons, New York, 1989), pp. 298-318
  3. W. M. Gibbons, T. Kosa, P. Palffy-Muhoray, P. J. Shannon, and S. T. Sun, “Continuous grey-scale image storage using optically aligned nematic liquid crystals,” Nature, vol. 377, pp. 43-46, 1995 https://doi.org/10.1038/377043a0
  4. Kunihiro Ichimura, “Photoalignment of Liquid-Crystal Systems,” Chem, Rev., vol. 100, no. 5, pp.1847-1873, 2000 https://doi.org/10.1021/cr980079e
  5. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable herical mode generation,” Appl. Phys. Lett., vol. 88, pp. 221102-1 - 221102-3, 2006 https://doi.org/10.1063/1.2207993
  6. L. Marrucci, C. Manzo, and D. Paparo, “Optical Spinto-Orbit Angular Momentum Conversion in Inhomogeneous Anistropic Media,” Phys. Rev. Lett., vol. 96, pp. 163905-1-163906-4, 2006 https://doi.org/10.1103/PhysRevLett.96.163905
  7. L. Allen, M. W. Beijersbergen, R. J. C. Screeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian Laser modes,” Phys. Rev. A, vol. 45, no. 11, pp. 8185-8189, 1992 https://doi.org/10.1103/PhysRevA.45.8185
  8. Z. Zhuang, Y. J. Kim, and J. S. Patel, “Achromatic linear polarization rotator using twisted nematic liquid crystals,” Appl. Phys. Lett., vol. 76, no. 26, pp. 3995-3997, 2000 https://doi.org/10.1063/1.126846
  9. Fuzi Yang, Lizhen Ruan, S. A. Jewell, and J. R. Sambles, “Polarization rotator using a hybrid aligned nematic liquid crystal cell,” Opt. Exp., vol. 15, no. 7, pp. 4192-4197, 2007 https://doi.org/10.1364/OE.15.004192
  10. R. A. Soref and M. J. Rafuse, “Electrically Controlled Birefringence of Thin Nematic Films,” J. Appl. Phys., vol. 43, no. 5, pp. 2029-2037, 1972 https://doi.org/10.1063/1.1661449
  11. Shin-Tson Wu, Uzi Efron, and Laverne D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt., vol. 23, no. 21, pp. 3911-3915, 1984 https://doi.org/10.1364/AO.23.003911