DOI QR코드

DOI QR Code

Effects of Fruits and Stems of Opuntia ficus-indica on Blood Glucose and Lipid Metabolism in Streptozotocin-induced Diabetic Rats

손바닥선인장의 열매와 줄기가 Streptozotocin으로 유발된 당뇨 쥐의 혈당 및 지질대사에 미치는 영향

  • Yoon, Jin-A (Dept. of Food and Nutrition, Baewha Women's College) ;
  • Son, Yong-Suk (Division of Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University)
  • 윤진아 (배화여자대학 식품영양과) ;
  • 손용석 (고려대학교 생명과학대학 생명공학부)
  • Published : 2009.02.28

Abstract

This study was conducted to examine the effects of fruits and stems of Opuntia ficus-indica var. saboten Makino on water intake, feed intake, body weight, blood glucose level and glucose tolerance in streptozotocin (STZ)-induced diabetic rats. Forty Sprague-Dawley male rats were divided into non-diabetic control (NC), diabetic control (DC), 8% Opuntia fruit (DOF), 5% Opuntia stem (DO-5) and 10% Opuntia stem (DO-10) groups. Fruits and stems of Opuntia ficus-indica were freeze-dried and ground before use in the experiment. Animals were fed experimental diet for 3 weeks. DOF, DO-5 and DO-10 groups showed lower water and feed intake as well as less body weight loss than DC group. The fasting blood glucose levels were 100 mg/dL for NC and 379 mg/dL for DC. Fasting glucose level of DOF was a significantly low level of 28% (p<0.05), whereas DO-5 and DO-10 had a decrease of 5% and 9% compared to DC. As for the glucose tolerance test, the highest blood glucose levels for NC and DC-10 group were observed at 30 minutes after glucose injection while those of DOF and DO-5 groups were after 60 minutes. DOF and DO-5 plasma insulin level improved. Plasma total cholesterol, triglyceride, non-esterified fatty acid (NEFA) and LDL-cholesterol concentrations were also lower in DOF, DO-5 and DO-10 groups, although HDL-cholesterol level was only slightly affected by experimental diets compared to DC. These results suggest that the feeding of Opuntia ficus-indica fruits and stems improved blood glucose and lipid metabolism in STZ-induced diabetic rats.

손바닥선인장의 항당뇨 효과와 기작을 알아보기 위한 연구의 일환으로, 손바닥선인장의 열매 및 줄기의 급여가 STZ으로 당뇨가 유발된 8주령 수컷 흰쥐의 음수량, 식이섭취량, 체중, 공복혈당, 당내성에 미치는 효과와 당뇨의 합병증인 고지혈증(중성지방, 유리지방산, 총콜레스테롤, LDL-콜레스테롤, HDL-콜레스테롤)을 조사하였다. 손바닥선인장의 열매 및 줄기는 동결건조 후 분쇄하여 분말사료에 8%(열매) 및 5%와 10%(줄기) 수준으로 첨가하여 3주간 자유채식 시켰다. 실험군은 정상군(NC), 당뇨대조군(DC), 열매급여군 (DOF), 줄기5%급여군(DO-5), 줄기10%급여군(DO-10)으로 구분하였으며, 음수량은 1일, 식이섭취량은 2일 간격, 체중 및 혈당은 1주 간격으로 측정하였는데, 혈당은 12시간 절식 후 꼬리정맥에서 측정하였다. 당 내성은 공복 시 혈당을 측정한 후 포도당(50 mg/체중 1 kg)을 복강에 주사한 다음, 30, 60, 90, 120분 경과하였을 때 혈당과 동일한 방법으로 측정하였다. 수분함량은 열매가 94.5%, 줄기가 92.3%였고, 조회분, 조단백, 조지방, 조섬유 등의 농도는 줄기가 열매에 비해 높았고, NFE는 열매가 줄기에 비해 높았다. 체중변화는 DC에 비해 DOF에서 체중이 적게 감소했다. 음수량과 사료섭취량은 NC에 비해 DC가 각각 7.5배 및 1.5배 이상 증가하였고, 처리군들은 음수량 및 식이섭취량이 DC에 비해 낮았다. NC의 공복혈당은 평균 100 mg/dL이었고 DC는 379 mg/dL이었으며, DOF는 DC에 비해 28%의 혈당 감소를 보인 반면(P<0.05), DO-5는 5%와 DO-10은 9% 감소하여 유의적 차이를 보이지 않았다. 당 내성 실험에서 NC와 DO-5는 급여한지 30분 후에, 다른 처리군은 60분 후에 최고 혈당을 나타내었다. 혈장 인슐린 함량도 당뇨대조군과 비교해 DOF, DO-5와 DO-10에서 유의적(p<0.05)인 증가를 보였다. 이로써 손바닥선인장의 열매가 STZ으로 당뇨가 유발된 쥐에서 당뇨의 개선효과가 있는 것으로 판단된다. 또한 손바닥선인장의 열매 및 줄기 모두 당뇨의 합병증인 지질대사에서 혈장의 중성지방, 유리지방산, 총 콜레스테롤 그리고 LDL-콜레스테롤을 모두 DC와 비교해 DOF, DO-5와 DO-10에서 유의적인 감소를 보였다(p<0.05). 이상의 결과에서 볼 때, 손바닥선인장의 열매는 항당뇨효능이 있었고, 또 당뇨 합병증인 지질대사의 이상도 개선하는 것으로 관찰되었으며, 그 줄기는 통계적으로 유의한 혈당감소 효과를 보이지는 않았지만 당뇨의 합병증인 고지혈증을 개선시키는 것으로 나타나, 보다 구체적인 작용기작을 추가적 연구를 통해 확인할 필요가 있다고 사료된다.

Keywords

References

  1. Korea National Statistical Office. 2005. Death Rate
  2. Koivisto VA. 1993. Insulin therapy in type II diabetes. Diabetes Care 16: 29-39 https://doi.org/10.2337/diacare.16.3.29
  3. Lozoya M. 1989. Hypogiucaemic activity of Opuntia streptacantha throughout it's annual cycle. Am J Chin Med 17: 221-224 https://doi.org/10.1142/S0192415X89000310
  4. Choi J, Lee CK, Lee YC, Moon YI, Park H, Han YN. 2002. Biological activities of the extracts from fruit and stem of prickly pear (Opuntia ficus-indica var. Saboten)- II. Effects on dietary induced hyperlipidemia. Kor J Pharmacogn 33: 230-237
  5. Jiangsu (New) Medical College. 1985. Dictionary of Chinese Materia Mediaca. Shanghai Science & Technology Press. p 2731
  6. Choi HJ, Park SC, Hong TH. 2005. Anti-tumor activity of fermented liquid Opuntia humifusa in cervical cancer cells and its chemical composition. J Korean Soc Food Sci Nutr 34: 1525-1530 https://doi.org/10.3746/jkfn.2005.34.10.1525
  7. Ennouri M, Fetoui H, Hammami M, Bourret E, Attia H, Zeghal N. 2007. Effects of diet supplementation with cactus pear seeds and oil on serum and liver lipid parameters in rats. Food Chem 101: 248-253 https://doi.org/10.1016/j.foodchem.2006.01.026
  8. Ennouri M, Fetoui H, Bourret E, Zeghal N, Attia H. 2006a. Evaluation of some biological parameters of Opuntia ficus indica 1-2. Influence of a seed oil supplemented diet on rats. Bioresour Technol 97: 1382-1386 https://doi.org/10.1016/j.biortech.2005.07.010
  9. Ennouri M, Fetoui H, Bourret E, Zeghal N, Attia H. 2006b. Evaluation of some biological parameters of Opuntia ficus indica. 1. Influence of a seed supplemented diet on rats. Bioresour Technol 97: 2136-2140 https://doi.org/10.1016/j.biortech.2005.09.031
  10. Oh PS, Lim KT. 2006. Glycoprotein (90 kDa) isolated from Opuntia ficus-indica var. saboten Makino lowers plasma lipid level through scavenging of intracellular radicals in triton WR-1339-induces mice. Biol Pharm Bull 29: 1391-1396 https://doi.org/10.1248/bpb.29.1391
  11. AOAC. 1990. Official methods of analysis. 15th ed. Association of Analytical Chemists, Washington, DC. p 31
  12. Desbuquois B, Aurbach GB. 1971. Use of polythleme glycol to separate free and antibody bound peptide hormones in radioimmunoassays. J Clin Endocrinol Metab 33: 732-738 https://doi.org/10.1210/jcem-33-5-732
  13. Moon YI. 2004. Studies on cultural practices, composition and functional effect of Opuntia ficus-indica var. Saboten. PhD Dissertation. Cheju National University, Jeju
  14. Yang KM, Shin SR, Jang JH. 2006. Effect of combined extract of safflower seed with herbs on blood glucose level and biochemical parameters in streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr 35: 150-157 https://doi.org/10.3746/jkfn.2006.35.2.150
  15. Yang SM, Shon MY, Sung NJ. 2004. Effects of Sujungro on blood glucose and lipid level in streptozotocin-diabetic rats. Food Industry and Nutrition 9: 40-44
  16. Ko YC. 2003. Effects of multi-extracts of Mori folium and regular exercise on glucose and lipid metabolism in streptozotocin-induced diabetic rats. PhD Dissertation. Myongji University, Gyeonggi
  17. Park HR. 2004. Effect of natural medicinal plants extracts on blood glucose level and lipid metabolism in streptozotocin-induced diabetic rats. PhD Dissertation. Myongji University, Gyeonggi
  18. Shon MY, Choi SY, Cho HS, Sung NJ. 2004. Effects of cereal and red ginseng flour on blood glucose and lipid level in streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr 33: 1463-1468 https://doi.org/10.3746/jkfn.2004.33.9.1463
  19. Sexton WS. 1994. Skeletal muscle vascular transport capacity in diabetic rats. Diabetes 43: 225-231 https://doi.org/10.2337/diabetes.43.2.225
  20. Lee JH, Jun IN. 2004. The change of tissue lipid levels and fatty acid compositions by alloxan-induced diabetes in rats. J Korean Soc Food Sci Nutr 33: 1273-1278 https://doi.org/10.3746/jkfn.2004.33.8.1273
  21. Koh JB. 1998. Effect of raw soy flour (yellow and black) on serum glucose and lipid concentrations in streptozotocin-induced diabetic rats. J Korean Soc Food Sci Nutr 27: 313-318
  22. Kim MJ. 2001. Effect of amaranth (Amaranth spp. L) on lipid metabolism and serum glucose level in diabetic rats. MS Thesis. Korea University, Seoul
  23. Kim SJ. 2004. The effects of exercise and taurine supplementation on blood glucose, insulin, serum lipids and mtDNA content in STZ-induced diabetic rats. PhD Dissertation. Pusan National University, Busan
  24. Park JY. 2002. Effect of blood and hepatic enzymes activities in streptozotocin-induced diabetic rats by supplemen-tation of dandelion extracts. PhD Dissertation. Yeungnam University, Gyeongbuk
  25. Ahmed I, Adeghate E, Cummings E, Sharma AK, Singh J. 2004. Beneficial effects and mechanism of action of Momodica charantia juice in the treatment of streptozotocin-induced diabetes mellitus in rat. Mol Cell Biochem 261: 63-70 https://doi.org/10.1023/B:MCBI.0000028738.95518.90
  26. Latha ML, Pari SS, Bhonde R. 2004. Scoparia dulcis, a traditional ntidiabetic plant, protects against streptozotocin induced oxidative stress and apoptosis in vitro and in vivo. J Biochem Mol Toxicol 18: 261-272 https://doi.org/10.1002/jbt.20035
  27. DeFronzo RA. 1981. The effect of insulin on renal sodium metabolism. Diabetologia 21: 165-171 https://doi.org/10.1007/BF00252649
  28. Young IR, Stout RW. 1987. Effects of insulin and glucose on the cells of the arterial wall: Interaction of insulin with dibutyryl cyclic AMP and low density lipoprotein in arterial cells. Diabete Metab 13: 301-306
  29. Kasono K, Yasu T, Kakehashi A, Kinoshita N, Tamemoto H, Namai K, Ohno R, Ueba H, Kuroki M, Ishikawa S, Kawakami M. 2004. Nicorandil improves diabetes and rat islet beta-cell damage induced by streptozotocin in vivo and in vitro. Eur J Endocrinol 151: 277-285 https://doi.org/10.1530/eje.0.1510277
  30. Jang JY, Lee MK, Kim MJ, Cho SY. 1998. Effect of fiber on serum lipid metabolism in rats with diet-induced cholesterolemia. J Korean Soc Food Sci Nutr 27: 1211-1216
  31. Nakaya Y, Minami A, Harada N, Sakamoto S, Niwa Y, Ohnaka M. 2000. Taurine improves insulin sensitivity in the Otsuka Long-Evans Tokushima fatty rat, a model of spontaneous type 2 diabetes. Am J Nutr 71: 54-58
  32. Nikkila EA, Kekki M. 1973. Plasma triglyceride transport kinetics in diabetes mellitus. Metabolism 22: 1-22 https://doi.org/10.1016/0026-0495(73)90024-3
  33. Mousalli C, Downs RW, May JM. 1986. Potentiation by glucose of lipolytic responsiveness of human adipocytes. Diabetes 35: 759-763 https://doi.org/10.2337/diabetes.35.7.759
  34. Madigan C, Ryan M, Owens D, Collins P, Tomkin GH. 2000. Dietary unsaturated fatty acids in type 2 diabetes. Diabetes Care 23: 1472-1477 https://doi.org/10.2337/diacare.23.10.1472
  35. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. 1989. Beyond cholestrol. Modification of lowdensity-lipoprotein that increase its atherogenicity. N Engl J Med 320: 915-924 https://doi.org/10.1056/NEJM198904063201407
  36. Urano SM, Hoshi-hashizume, Tochigi N, Matsuo M, Shiraki M, Ito H. 1991. Vitamin E and the susceptibility of erythrocytes and reconstituted liposomes to oxidative stress in aged diabetics. Lipids 26: 58-61 https://doi.org/10.1007/BF02544025

Cited by

  1. Effects of Jerusalem Artichoke (Helianthus tuberosus L.) Extracts on Blood Glucose and Lipid Metabolism in STZ-induced Diabetic Rats vol.47, pp.4, 2015, https://doi.org/10.15324/kjcls.2015.47.4.203
  2. Monitoring on extraction characteristics of cheonnyuncho (Opuntia fiscus-indica) fruit vol.22, pp.2, 2013, https://doi.org/10.1007/s10068-013-0089-6
  3. Effects of Opuntia ficus-indica Complex on Lipid Metabolism in Streptozotocin-induced Diabetic Rats vol.26, pp.3, 2013, https://doi.org/10.9799/ksfan.2013.26.3.526
  4. Flow behaviors of fruit and stem extracts from Korean cactus (Opuntia humifusa) vol.23, pp.4, 2014, https://doi.org/10.1007/s10068-014-0151-z
  5. Ameliorating effects of a nopal (Opuntia ficus-indica) complex on blood glucose in db/db mice vol.20, pp.1, 2011, https://doi.org/10.1007/s10068-011-0035-4
  6. Effects of Spagranii Rhizoma Extract on High Fat·High Sucrose Diet and Streptozotocin Administration-Induced Diabetic Rats vol.16, pp.2, 2016, https://doi.org/10.15429/jkomor.2016.16.2.92
  7. Plants used for the treatment of diabetes in Jordan: A review of scientific evidence vol.49, pp.3, 2011, https://doi.org/10.3109/13880209.2010.501802
  8. Effects of Namhae Specialized Crops Water Extract on Lipid Metabolism in Rats Fed a Cholesterol Diet vol.27, pp.5, 2011, https://doi.org/10.9724/kfcs.2011.27.5.599
  9. The comparisons of Lycii Radicis Cortex and Corni Fructus water extract effects on streptozotocin-induced diabetes in rats vol.28, pp.6, 2013, https://doi.org/10.6116/kjh.2013.28.6.71
  10. Total Polyphenol and Flavonoid of Fruit Extract of Opuntia humifusa and Its Inhibitory Effect on the Growth of MCF-7 Human Breast Cancer Cells vol.38, pp.12, 2009, https://doi.org/10.3746/jkfn.2009.38.12.1679
  11. Effects of Gamiolnyeo-jeon on Lipid Metabolism and Blood Glucose Level in db/db Mice vol.31, pp.2, 2016, https://doi.org/10.6116/kjh.2016.31.2.39.
  12. Radical-Scavenging Activities of Fermented Cactus Cladodes (Opuntia humifusa Raf.) vol.29, pp.2, 2016, https://doi.org/10.9799/ksfan.2016.29.2.200
  13. The Effect of Opuntia humifusa Seed Extracts on Platelet Aggregation and Serum Lipid Level in Ovariectomized Rats vol.22, pp.12, 2012, https://doi.org/10.5352/JLS.2012.22.12.1680
  14. Hepatorenal Protective Effects of Some Plant Extracts on Experimental Diabetes in Male Rats vol.15, pp.2, 2019, https://doi.org/10.3923/ijp.2019.238.247
  15. Comparative Study on the Influence of Some Medicinal Plants on Diabetes Induced by Streptozotocin in Male Rats vol.2019, pp.2314-6141, 2019, https://doi.org/10.1155/2019/3596287
  16. In Vitro Evaluation of Biological Activities of Jeju Island Plants Mixture vol.14, pp.1, 2009, https://doi.org/10.15810/jic.2018.14.1.005
  17. 명월초, 여주 및 울금을 포함하는 돼지감자 복합물의 streptozotocin 유발 당뇨쥐에서 혈당강하 및 체내 지질개선에 미치는 영향 vol.28, pp.6, 2018, https://doi.org/10.5352/jls.2018.28.6.671
  18. Lactobacillus plantarum으로 발효한 천년초 선인장 열매의 발효특성 및 in vitro 항비만 효과 vol.34, pp.1, 2009, https://doi.org/10.7318/kjfc/2019.34.1.75
  19. Effect on the Emulsification Stability and Quality of Emulsified Sausages Added with Wanggasi-Chunnyuncho (Opuntia humifusa f. jeollaensis) Fruit Powders vol.39, pp.6, 2009, https://doi.org/10.5851/kosfa.2019.e85