DOI QR코드

DOI QR Code

Multi-parametric Diagnosis Indexes and Emerging Pattern based Classification Technique for Diagnosing Cardiovascular Disease

심혈관계 질환 진단을 위한 복합 진단 지표와 출현 패턴 기반의 분류 기법

  • 이헌규 (한국전자통신연구원 우정기술센터) ;
  • 노기용 (한국표준과학연구원) ;
  • 류근호 (충북대학교 전기전자컴퓨터공학부) ;
  • 정두영 (충북대학교 전기전자컴퓨터공학부)
  • Published : 2009.02.28

Abstract

In order to diagnose cardiovascular disease, we proposed EP-based(emerging pattern- based) classification technique using multi-parametric diagnosis indexes. We analyzed linear/nonlinear features of HRV for three recumbent postures and extracted four diagnosis indexes from ST-segments to apply the multi-parametric diagnosis indexes. In this paper, classification model using essential emerging patterns for diagnosing disease was applied. This classification technique discovers disease patterns of patient group and these emerging patterns are frequent in patients with cardiovascular disease but are not frequent in the normal group. To evaluate proposed classification algorithm, 120 patients with AP (angina pectrois), 13 patients with ACS(acute coronary syndrome) and 128 normal people data were used. As a result of classification, when multi-parametric indexes were used, the percent accuracy in classifying three groups was turned out to be about 88.3%.

심혈관계 질환의 진단 위해서 복합 진단 지표를 이용한 출현 패턴 기반의 분류 기법을 제안하였다. 복합 진단 지표 적용을 위해서 심박동변이도의 선형/비선형적 특징들을 세 가지 누운 자세에 대해 분석하였고 ST-segments로부터 4개의 진단 지표를 추출하였다. 이 논문에서는 질환진단을 위해서 필수 출현 패턴을 이용한 분류 모델을 제안하였다. 이 분류 기법은 환자 그룹의 질환 패턴들을 발견하며, 이러한 출현 패턴은 심혈관계 질환 환자들에서는 빈발하지만 정상인 그룹에서는 빈발하지 않는 패턴들이다. 제안된 분류 알고리즘의 평가를 위해서 120명의 협심증(AP: angina pectrois) 환자, 13명의 급성관상동맥증후군(ACS: acute coronary syndrome) 환자 그리고 128명의 정상인 데이터를 사용하였다. 실험 결과 복합 지표를 사용하였을 때, 세 그룹의 분류에 대한 정확도는 약 88.3%였다.

Keywords

References

  1. 통계청 인구동향과, “2006년 사망 및 사망원인통계결과,” pp.17-18, 2007
  2. R. Detrano, D. Mulvihill, K. Lehmann, P. Dubach, A. Colombo, D. McArthur, V. Froelicher, “Exercise-induced ST depression in the diagnosis of coronary artery disease. A meta-analysis,” Journal of Circulation, American Heart Association, Vol.80, pp.87-98, 1989
  3. M. E. Bertrand et al, “Management of acute coronary artery syndrome in patients presenting without persistent ST-segment elevation,” European Heart Journal, Vol. 23, pp.1809-1833, 2002 https://doi.org/10.1053/euhj.2002.3385
  4. H. G. Lee, K. Y. Noh, K. H. Ryu, “Mining Biosignal Data: Coronary Artery Disease Diagnosis using Linear and Nonlinear Features of HRV,” Lecture Notes in Artificial Intelligence, Springer Berlin/Heidelberg, Vol. 4819, Emerging Technologies in Knowledge Discovery and Data Mining, pp.56-66, 2007 https://doi.org/10.1007/978-3-540-77018-3_23
  5. K. H. Ryu, W. S. Kim, H. G. Lee, “A Data Mining Approach and Framework of Intelligent Diagnosis System for Coronary Artery Disease Prediction,” The Institute of Electronics, Information and Communication Engineers (IEICE), pp.33-34, 2008
  6. J. Pumprla, K. Howorka, D. Groves, M. Chester, “Functional assessment of heart rate variability physiological basis and practical applications,” Journal of Cardiology, Vol.84, pp.1-14, 2002 https://doi.org/10.1016/S0167-5273(02)00057-8
  7. JF. Sneddon, Y. Bashir, “Vagal stimulation after myocardial infarction: accentuating the positive,” Journal of American Cardiology, Vol.22, pp.1335-1337, 1993 https://doi.org/10.1016/0735-1097(93)90539-D
  8. W. S. Kim, Y. Z. Yoon, J. H. Bae, K. S. Soh, “Nonlinear characteristics of heart rate time series: influence of three recumbent positions in patients with mild or severe coronary artery disease,” Physiological Measurement Vol.26, pp.517-529. 2005 https://doi.org/10.1088/0967-3334/26/4/016
  9. S. Miyamoto, M. Fujita, K. Tambara, H. Sekiguchi, S. Eiho, K. Hasegawa, et al. “Circadian variation of cardiac autonomic nervous activity is well preserved in patients with mild to moderate chronic heart failure: effect of patient position.” Journal of Cardiology, Vol. 93, No.3, pp.247-252. 2004 https://doi.org/10.1016/S0167-5273(03)00190-6
  10. C. Papaloukas, D. I. Fotiadis, A. Likas, and L. K. Michalis, “An ischemia detection method based on neural networks and bidirectional associative memories,” Journal of Medical Eng. Technologies, Vol.24, pp.167-178, 2002
  11. Y. Goletsis, C. Papaloukas, D. I. Fotiadis, A. Likas, and L. K. Michalis, “Automatic ischemic beat classification using genetic algorithms and multicriteria decision analysis,” IEEE Trans. Biomedical Eng., Vol.51, No. 10, pp.1717-1725, 2004 https://doi.org/10.1109/TBME.2004.828033
  12. C. Papaloukas, D. I. Fotiadis, A. P. Liavas, A. Likas, and L. K. Michalis, “A Knowledge-Based Technique for Automated Detection of Ischemic Episodes in Long Duration Electrocardiograms,” Medical & Biological Eng. & comp., Vol.39,1 No.1, pp.105-112, 2001 https://doi.org/10.1007/BF02345273
  13. “European ST-T database directory,” European Society of Cardiology, Pisa, Italy, 1991
  14. G. Dong, X. Zhang, L. Wong, J. Li, “Classification by aggregating emerging patterns,” Proceedings of the. 2nd Int'l Conference on Discovery Science, pp.30-42, 1999
  15. W. J. Tompkins, “Biomedical digital signal processing,” Prentice Hall PTR, Upper Saddle River, New Jersey 07458, 1995
  16. D. Barnaby, K. Ferric, DT. Kaplan, S. Shah, P. Bijur, EJ. Gallagher, “Heart rate variability in emergency department patients with sepsis,” Emerging Medical, Vol.9, pp.661-670, 2002
  17. M. Brennan, M. palaniswami, P. Kamen, “Do existing measurements of Poincare plot geometry reflect nonlinear features of heart rate variability?” IEEE Trans. on Biomedical Eng., Vol.48, No.11, pp.1342-1347, 2001 https://doi.org/10.1109/10.959330
  18. S. M. Pincus, and W. M. Huang, “Approximate entropy: statistical properties and applications,” Communication Statist. Theory Meth. Vol.21, pp.3061-3077, 1992 https://doi.org/10.1080/03610929208830963
  19. S. M. Pincus and A. L. Goldberger, “Physiological time-series analysis: what does regularity quantify?” Physiology, Vol.266, H1643, 1994
  20. TH. Makikallio, T. Ristimae, KE. Airaksinen, CK Peng, AL Goldberger, “Heart rate dynamics in patients with stable angina pectoris and utility of fractal and complexity measures,” Journal of Cardiology, Vol.81, pp.27-31, 1998 https://doi.org/10.1016/S0002-9149(97)00799-6
  21. N. Kannathal, UR. Acharya, CM. Lim, PK. Sadasivan, “Characterization of EEG-A comparative study,” Computer Methods and Programs in Biomedical, Vol.80, No.1, pp.17-23, 2005 https://doi.org/10.1016/j.cmpb.2005.06.005
  22. U. Fayyad, K. Irani, “Multi-Interval discretization of continuous-valued attributes for classification learning,” Proceedings of the. Int'l Joint Conference. on Artificial Intelligence, pp.1022-1027, 1993
  23. L. Guyon, A. Elisseeff, “introduction to variable and feature selection,” Journal of Machine Learning Research 3, pp.1157-1182, 2003 https://doi.org/10.1162/153244303322753616
  24. G. Dong, J. Li, X. Zhang, “Discovering jumping emerging patterns and experiments on real datasets,” Proceedings of the 9th Int'l Database Conference on Heterogeneous and Internet Databases, pp.155-168, 1999
  25. J. Han, M. Kamber, “Data Mining: Concepts and Techniques,” Morgan Kaufmann publishers, 2000
  26. R. M. Bethea, B. S. Duran, T. L. Boullion, “Statistical methods for engineers and scientists,” New York : M. Dekker. 1995
  27. J. Quinlan, “C4.5: Programs for Machine Learning,” Morgan Kaufmann San Mateo, 1993
  28. IH. Witten, E. Frank, “Data Mining: Practical Machine Learning Tools and Techniques,” San Mateo, CA: Morgan Kaufmann, 1999
  29. W. Li, J. Han, J. Pei, “CMAR: Accurate and Efficient Classification Based on Multiple Association Rules,” Proceedings of the Int'l Conference Data Mining. Vol.1119, pp.369-376, 2001