A CHARACTERIZATION OF THE RIORDAN BELL SUBGROUP BY C-SEQUENCES

Sung-TaE Jin

Abstract

In this paper, we consider a new sequence called by the C-sequence of the Riordan array. It allows us to find a simple proof for several combinatorial identities. Further, we prove that a C-sequence characterizes Bell subgroup of the Riordan group.

1. Introduction

A Riordan array introduced by Shapiro et al. in [4] is defined by two formal power series $g(z)=\sum_{n \geq 0} g_{n} z^{n}$ and $f(z)=\sum_{n \geq 1} f_{n} z^{n}$ where $g_{0} \neq 0$ and $f_{1} \neq 0$. An infinite lower triangular matrix \bar{D} is called a Riordan array if its k-th column generating function(GF) is $g(z)(f(z))^{k}$ for $k=0,1,2, \ldots$. As usual, we write $D=(g(z), f(z))$. If we define the multiplication $*$ in the set \mathcal{R} of all Riordan arrays by

$$
(g(z), f(z)) *(h(z), \ell(z))=(g(z) h(f(z)), \ell(f(z))),
$$

then the set \mathcal{R} forms a group. We call \mathcal{R} the Riordan group. Obviously, the identity element of the Riordan group is $I=(1, z)$, the usual identity matrix, and the inverse of $(g(z), f(z))$ is $\left(\frac{1}{g(\bar{f}(z))}, \bar{f}(z)\right)$, where $\bar{f}(z)$ is the compositional inverse of $f(z)$. That is, $f(\bar{f}(z))=\bar{f}(f(z))=z$.

It is well known [2] that every element of a Riordan array can be expressed as a linear combination of the elements in the preceding row. That is, there exist unique sequences $A=\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ and $Z=$ $\left(z_{0}, z_{1}, z_{2}, \ldots\right)$ with $a_{0} \neq 0, z_{0} \neq 0$ such that
(i) $d_{n+1, k+1}=\sum_{j=0}^{\infty} a_{j} d_{n, k+j},(k, n=0,1 \ldots)$,
(ii) $d_{n+1,0}=\sum_{j=0}^{\infty} z_{j} d_{n, j},(n=0,1, \ldots)$.

Received March 9, 2009. Revised April 22, 2009.
2000 Mathematics Subject Classification: 05A15.
Key words and phrases: Riordan matrix, C-sequences, Bell subgroup.

Such sequences are called by the A-sequence and the Z-sequence of D, respectively. Let $A(z)$ and $Z(z)$ be the generating function of A-sequence and Z-sequence of $D=(g(z), f(z))$, then we have

$$
\begin{equation*}
f(z)=z A(f(z)) \text { and } g(z)=\frac{g_{0}}{1-z Z(f(z))} . \tag{1}
\end{equation*}
$$

Recently, Cheon et al.[1] showed that, if Riordan array D has A-sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ and Z-sequence $\left(z_{0}, z_{1}, z_{2}, \ldots\right)$ then the Stieltjes transform $S_{D}:=D^{-1} \bar{D}$ of D has the following forms :

$$
S_{D}=\left[\begin{array}{ccccc}
z_{0} & a_{0} & 0 & 0 & 0 \\
z_{1} & a_{1} & a_{0} & 0 & 0 \\
z_{2} & a_{2} & a_{1} & a_{0} & 0 \\
z_{3} & a_{3} & a_{2} & a_{1} & a_{0} \\
& & \cdots & &
\end{array}\right]
$$

where $\bar{D}=D(1 \mid *)$.
In this paper, we define a new sequence called by C-sequence, and we obtain a characterization of the Bell subgroup by a C-sequence. Finally, by using the concept of C-sequences we obtain a simple proof for the following identities :
(i) $B=1+2 z C B$
(ii) $C=\frac{F}{1-z F}$
where C, B, and F are generating functions for the Catalan numbers, the Central binomial numbers, and the Fine numbers. In [3], (i) and (ii) are obtained from the product of Riordan arrays and their generating functions.

2. C-sequence

Let $D=(g(z), f(z))$ be a Riordan array. We say that D has a C-sequence GF $C(z)=\sum_{n \geq 0} c_{n} z^{n}$ if

$$
\begin{equation*}
d_{n+1, k}=d_{n, k-1}+\sum_{i \geq 0} c_{i} d_{n-i, k} \text { for } n, k=0,1,2, \ldots \tag{2}
\end{equation*}
$$

where $d_{n,-1}=0$.
For the convenience, we assume that $g(0)=1$ and $f^{\prime}(0)=1$ for a Riordan array $D=(g(z), f(z))$.

Lemma 2.1. Let $D=(g(z), f(z))$ be a Riordan array with a C sequence GF $C(z)$. Then $f(z)$ and $C(z)$ has the following relation :

$$
\begin{equation*}
f(z)=\frac{z}{1-z C(z)} . \tag{3}
\end{equation*}
$$

Proof. Since $C(z)=\sum_{n \geq 0} c_{n} z^{n}$, the k-th column generating function of D can be represented by (2) as follow :
$g(z)(f(z))^{k}=z g(z)(f(z))^{k-1}+c_{0} z g(z)(f(z))^{k}+c_{1} z^{2} g(z)(f(z))^{k}+\cdots$.
By a simple computation, we have $f(z)=z+z f(z) C(z)$. Thus

$$
f(z)=\frac{z}{1-z C(z)},
$$

which completes the proof.
Theorem 2.2. Let $D=(g(z), f(z))$ be a Riordan array with a C sequence GF $C(z)$. If $A_{1}(z)$ is a generating function for A-sequence of D^{-1} then

$$
A_{1}(z)=1-z C(z)
$$

Proof. By Lemma 2.1, we immediately obtain

$$
A_{1}(z)=\frac{z}{f(z)}=\frac{z}{\frac{z}{1-z C(z)}}=1-z C(z) .
$$

For some Riordan array $D=\left[d_{n, k}\right]_{n, k \geq 0}$, the C-Stieltjes Transform C_{D} is defined by the solution of

$$
\begin{equation*}
C_{D} D=\bar{D}-D^{\prime}, \tag{4}
\end{equation*}
$$

where $\bar{D}=D(1 \mid *), D^{\prime}=\left[d_{n, k}^{\prime}\right]_{n, k \geq 0}$ such that

$$
d_{n, k}^{\prime}=d_{n, k-1} \quad \text { for } \quad k \geq 1 \quad \text { and } \quad d_{n, 0}^{\prime}=0 .
$$

Since D is nonsingular, it follows from (4) that

$$
\begin{equation*}
C_{D}=\left(\bar{D}-D^{\prime}\right) D^{-1} . \tag{5}
\end{equation*}
$$

Theorem 2.3. Let D be a Riordan array. Then D has a C-sequence $G F C(z)=\sum_{n \geq 0} c_{n} z^{n}$ if and only if C_{D} has the following form:

$$
C_{D}=\left[\begin{array}{ccccc}
c_{0} & 0 & 0 & 0 & 0 \\
c_{1} & c_{0} & 0 & 0 & 0 \\
c_{2} & c_{1} & c_{0} & 0 & 0 \\
c_{3} & c_{2} & c_{1} & c_{0} & 0 \\
& & \cdots & &
\end{array}\right] .
$$

Proof. Note that D has a C-sequence GF $C(z)=\sum_{n \geq 0} c_{n} z^{n}$ if and only if (2) holds for all $n, k \geq 0$. Hence it can be rearranged in the following matrix form :

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
d_{1,0} & 1 & 0 & 0 & 0 \\
d_{2,0} & d_{2,1} & 1 & 0 & 0 \\
d_{3,0} & d_{3,1} & d_{3,2} & 1 & 0 \\
d_{4,0} & d_{4,1} & d_{4,2} & d_{4,3} & 1 \\
& & \cdots & &
\end{array}\right]} \\
& =\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & d_{1,0} & 1 & 0 & 0 \\
0 & d_{2,0} & d_{2,1} & 1 & 0 \\
0 & d_{3,0} & d_{3,1} & d_{3,2} & 1 \\
& & \cdots & &
\end{array}\right]+\left[\begin{array}{ccccc}
c_{0} & 0 & 0 & 0 & 0 \\
c_{1} & c_{0} & 0 & 0 & 0 \\
c_{2} & c_{1} & c_{0} & 0 & 0 \\
c_{3} & c_{2} & c_{1} & c_{0} & 0 \\
& & \vdots & &
\end{array}\right]\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
d_{1,0} & 1 & 0 & 0 & 0 \\
d_{2,0} & d_{2,1} & 1 & 0 & 0 \\
d_{3,0} & d_{3,1} & d_{3,2} & 1 & 0 \\
& & \cdots & &
\end{array}\right] .
\end{aligned}
$$

The above matrix equation implies that $\bar{D}=D^{\prime}+C_{D} D$. Hence the proof is completed.

3. A characterization of the Riordan Bell subgroup

The Bell subgroup [3] is the set of all Riordan arrays of the form $D=\left(\frac{f(z)}{z}, f(z)\right)$. We call the Bell matrix the Riordan array in the Bell subgroup. We now characterize the Bell subgroup by a C-sequence.

Theorem 3.1. Let $D=(g(z), f(z))$ be a Riordan array. Then D is a Bell matrix if and only if D has a C-sequence.

Proof. Let $D=(g(z), f(z))$ be a Riordan array with C-sequence GF $C(z)=\sum_{n \geq 0} c_{n} z^{n}$.
By Lemma 2.1, we have

$$
f(z)=\frac{z}{1-z C(z)} .
$$

Now consider (2) for $k=0$. There exists

$$
d_{n+1,0}=\sum_{i \geq 0} c_{i} d_{n-i, 0} .
$$

Since $g(0)=1$, the 0 -th column generating function of D can be represented as :

$$
g(z)=1+c_{0} z g(z)+c_{1} z^{2} g(z)+\cdots .
$$

By a simple computation, we have

$$
\begin{equation*}
g(z)=1+z g(z) C(z) . \tag{6}
\end{equation*}
$$

Thus

$$
g(z)=\frac{1}{1-z C(z)}=\frac{f(z)}{z}
$$

which implies that D is a Bell matrix. Conversely, let $D=\left(\frac{f(z)}{z}, f(z)\right)$. Then there exist $C(z)$ such that

$$
\begin{equation*}
C(z)=\frac{f(z)-z}{z f(z)} \tag{7}
\end{equation*}
$$

By (7), $f(z)=z+z C(z) f(z)$, it implies D has the C-sequence GF $C(z)$. Therefore the proof is completed.

TheOrem 3.2. Let $D_{1}=\left(\frac{f(z)}{z}, f(z)\right), D_{2}=\left(\frac{F(z)}{z}, F(z)\right)$ be Riordan arrays with C-sequences $G F C_{1}(z)$ and $C_{2}(z)$, respectively. Then $D_{1} D_{2}$ has the C-sequence GF

$$
C(z)=C_{1}(z)+C_{2}(f(z)) .
$$

Proof. By the matrix multiplication of Riordan arrays, we have

$$
D_{1} D_{2}=\left(\frac{f(z)}{z}, f(z)\right)\left(\frac{F(z)}{z}, F(z)\right)=\left(\frac{F(f(z))}{z}, F(f(z))\right) .
$$

By Lemma 2.1, we have

$$
f(z)=\frac{z}{1-z C_{1}(z)} \text { and } F(z)=\frac{z}{1-z C_{2}(z)} .
$$

Hence,

$$
\begin{aligned}
F(f(z)) & =\frac{f(z)}{1-f(z) C_{2}(f(z))}=\frac{\frac{z}{1-z C_{1}(z)}}{1-\left(\frac{z}{1-z C_{1}(z)}\right) C_{2}(f(z))} \\
& =\frac{z}{1-z\left(C_{1}(z)+C_{2}(f(z))\right)} .
\end{aligned}
$$

It follows that $C(z)=C_{1}(z)+C_{2}(f(z))$. The proof is completed.

4. Applications of C-sequence

In this section, we obtain a simple proof for two well-known identities related to the Catalan numbers. Let
(8) $C=\frac{1-\sqrt{1-4 z}}{2 z}, B=\frac{1}{\sqrt{1-4 z}}$, and $F=\frac{1}{z} \frac{1-\sqrt{1-4 z}}{3-\sqrt{1-4 z}}$
be generating functions for the Catalan, Central binomial, and Fine numbers, respectively. The concept of C-sequence allows us to obtain a simple proof for (i) and (ii).

Theorem 4.1. Let C, B, and F be generating functions given in (8). Then
(i) $B=1+2 z C B$
(ii) $C=\frac{F}{1-z F}$

Proof. (i) Consider the Riordan array
$D=\left(\frac{1}{\sqrt{1-4 z}}, \frac{z}{\sqrt{1-4 z}}\right)=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 & 0 \\ 6 & 4 & 1 & 0 & 0 & 0 \\ 20 & 16 & 6 & 1 & 0 & 0 \\ 70 & 64 & 30 & 8 & 1 & 0 \\ 252 & 256 & 140 & 48 & 10 & 1\end{array}\right]$.
Since D is the Bell matrix, by Theorem $3.1 D$ has a C-sequence. Hence by Lemma 2.1, we have

$$
\begin{equation*}
C(z)=\frac{f(z)-z}{z f(z)}=\frac{z B-z}{z^{2} B}=\frac{1-\sqrt{1-4 z}}{z}=2 C . \tag{9}
\end{equation*}
$$

Since $g(z)=B$, it immediately follows from (6) and (9) that

$$
B=1+2 z C B
$$

(ii) We now consider the Riordan array
$D=\left(1+z C, z+z^{2} C\right)=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 & 0 \\ 2 & 3 & 3 & 1 & 0 & 0 \\ 5 & 6 & 6 & 4 & 1 & 0 \\ 14 & 15 & 13 & 10 & 5 & 1\end{array}\right]$.
It is easy to show that F is the generating function for the C-sequence of D. By Lemma 2.1, we have

$$
C(z)=\frac{f(z)-z}{z f(z)}=\frac{\left(z+z^{2} C\right)-z}{z\left(z+z^{2} C\right)}=\frac{C}{1+z C}=\frac{1}{z} \frac{1-\sqrt{1-4 z}}{3-\sqrt{1-4 z}}=F
$$

Hence it follow from (6) that

$$
1+z C=1+z F(1+z C)
$$

which implies

$$
C=\frac{F}{1-z F}
$$

The proof is completed.

References

[1] G.-S. Cheon, H. Kim and L. W. Shapiro, Riordan group involutions, Lin. Alg. Appl., 428 (2008), 941-952.
[2] D. G. Rogers, Pascal triangles, Catalan numbers and renewal arrays, Discrete Math. 22 (1978), 301-310.
[3] L. W. Shapiro, Bijections and the Riordan group, Theoretical Computer Science, 307 (2003), 403-413.
[4] L. W. Shapiro, S. Getu, W.-J. Woan and L. Woodson, The Riordan group, Discrete Appl. Math. 34 (1991), 229-239.

Department of Mathematics,
SungkyunkwanUniversity,
Suwon 440-746, Rep. of Korea
E-mail: anishie@skku.edu

