Korean J. Math. 17 (2009), No. 2, pp. 155–159

A STUDY ON GENERALIZED QUASI-CLASS A OPERATORS

GEON-HO KIM AND IN HO JEON*

ABSTRACT. In this paper, we consider the operator T satisfying $T^{*k}(|T^2| - |T|^2)T^k \geq 0$ and prove that if the operator is injective and has the real spectrum, then it is self-adjoint.

1. Introduction

Let $\mathscr{L}(\mathscr{H})$ denote the algebra of bounded linear operators on a Hilbert space \mathscr{H} . Recall ([2]) that $T \in \mathscr{L}(\mathscr{H})$ is called *p*-hyponormal if $(T^*T)^p \geq (TT^*)^p$ for $p \in (0, 1]$, and T is called *paranormal* if $||T^2x|| \geq$ $||Tx||^2$ for all unit vector $x \in \mathscr{H}$. Following [3] and [2] we say that $T \in \mathscr{L}(\mathscr{H})$ belongs to class A if $|T^2| \geq |T|^2$. We shall denote classes of p-hyponormal operators, paranormal operators, and class A operators by $\mathcal{H}(p)$, \mathcal{PN} , and \mathcal{A} , respectively. It is well known that

(1.1)
$$\mathcal{H}(p) \subset \mathcal{A} \subset \mathcal{PN}.$$

In [5] Jeon and Kim considered an extension of the notion of class A operators; we say that $T \in \mathscr{L}(\mathscr{H})$ is quasi-class A if

$$T^*|T^2|T \ge T^*|T|^2T.$$

We shall denote the set of quasi-class A operators by \mathcal{QA} . As shown in [5], the class of quasi-class A operators properly contains classes of class A operators, i.e., the following inclusions holds;

(1.2)
$$\mathcal{H}(p) \subset \mathcal{A} \subset \mathcal{QA}.$$

²⁰⁰⁰ Mathematics Subject Classification: 47B20.

Key words and phrases: quasi-class (A, k) operator.

This work was supported by Ansan College of Technology, Korea, made in the program year of 2008.

^{*}Corresponding author.

In view of inclusions (1.1) and (1.2), it seems reasonable to expect that the operators in class QA are paranormal. But there exists an example [5] that one would be wrong in such an expectation.

Now, we consider a following generalization of quasi-class A operators in [10].

DEFINITION 1.1. We say that $T \in \mathscr{L}(\mathscr{H})$ is of quasi-class (A, k) class if

(1.3)
$$T^{*k}(|T^2| - |T|^2)T^k \ge 0 \quad for \ k \in \mathbb{N}$$

We denote the spectrum and the closure of numerical range of an operator $T \in \mathscr{L}(\mathscr{H})$ by $\sigma(T)$ and $\overline{W(T)}$, respectively.

In 1966, I. H. Sheth [9] showed that if T is a hyponormal operator and $S^{-1}TS = T^*$ for any operator S, where $0 \notin \overline{W(S)}$, then T is selfadjoint, and then I. H. Kim [7] extended this result of Sheth to the class of *p*-hyponormal operators. Very recently, Jeon, Kim, Tanahashi and Uchiyama [6] also extended this result to the class of quasi-class Aoperators as follows.

PROPOSITION 1.2 ([6], Theorem 2.6). If T is a quasi-class A operator and S is an arbitrary operator for which $0 \notin \overline{W(S)}$ and $ST = T^*S$, then T is self-adjoint.

The aim of this paper is to extend this result to more generalized quasi-class A operators(i.e., quasi-class (A, k) operators) as follows.

THEOREM 1.3. Let T be of injective quasi-class (A, k) with the real spectrum. Then T is self-adjoint.

In [11], J.P. Williams showed that if $T \in \mathscr{L}(\mathscr{H})$ is any operator such that $ST = T^*S$, where $0 \notin \overline{W(S)}$, then the spectrum of T is real. So, for a $T \in \mathscr{L}(\mathscr{H})$, the condition that

there exists an operator S such that $ST = T^*S$, where $0 \notin \overline{W(S)}$

is stronger than that the spectrum of T is real, which shows that the above Theorem extends Proposition 1.2. under the injectiveness of T.

2. Proofs

In this section we give a proof of Theorem1.3, modifying arguments used in proofs of [6]. We need some lemmas.

156

LEMMA 2.1. Let T be of quasi-class (A, k). Then the following assertions hold:

(1) Assume that ran T^k is not dense, and decompose

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix} \quad on \quad \mathscr{H} = \overline{\operatorname{ran}(T^k)} \oplus \ker T^{k*}$$

where $\overline{\operatorname{ran}(T^k)}$ is the closure of ran T^k . Then T_1 is of class A, $T_3^k = 0$ and $\sigma(T) = \sigma(T_1) \cup \{0\}$.

(2) The restriction $T|_{\mathcal{M}}$ to an invariant subspace \mathcal{M} of T is also of quasi-class (A, k).

LEMMA 2.2. Let $T \in \mathscr{L}(\mathscr{H})$ be a class A operator. Then we have an inequality

(2.1)
$$|||T^2| - |T|^2|| \le |||T|U|T| - |T|U^*|T||| \le \frac{1}{\pi} \text{meas } \sigma(T),$$

where T = U|T| is the polar decomposition of T.

LEMMA 2.3. Let $T \in \mathscr{L}(\mathscr{H})$ be a class A operator with the real spectrum. Then T is self-adjoint.

Proof. Since T is of class A and it has the real spectrum, from (2.1), we have $|T^2| = |T|^2$. Now let

$$T = \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix} \quad \text{on } \overline{\operatorname{ran}(T)} \oplus \ker(T^*)$$

be a 2×2 matrix representation of T, and let P be the orthogonal projection onto $\overline{\operatorname{ran}(T)}$. Then since

$$|T^2| - |T|^2 = 0 \implies T^*(T^*T - TT^*)T = 0,$$

we have $P(T^*T - TT^*)P = 0$. Therefore, by simple calculation, $A^*A - AA^* = BB^*$ and hence A is hyponormal. Since the spectrum of A is contained in the spectrum of T, it is also real. Thus A is self-adjoint and B = 0, which implies that T is self-adjoint.

Proof of Theorem 1.3. If T is of quasi-class (A, k) and the range of T^k is dense, then T is of class A from Lemma 2.1. Hence Theorem 1.3 is reduced to Lemma 2.3. Assume that the range of T^k is not dense. From Lemma 2.1 we have a decomposition

$$T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$$
 on $\mathscr{H} = \overline{\operatorname{ran}(T^k)} \oplus \ker T^{k*}$.

Then T_1 is of class A and $T_3^k = 0$. Since the spectrum of T_1 is contained in the spectrum of T, T_1 is self-adjoint by Lemma 2.3. Let $Q = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ be the orthogonal projection onto $\overline{\operatorname{ran}(T^k)}$. Then

$$Q|T|^2 Q = QT^*TQ = \begin{pmatrix} T_1^2 & 0\\ 0 & 0 \end{pmatrix}$$

and so we may write

$$|T|^2 = \begin{pmatrix} T_1^2 & C \\ C^* & D \end{pmatrix}$$

On the other hand, let $|T| = \begin{pmatrix} E & F' \\ F^* & G \end{pmatrix}$. Then we have

$$\begin{pmatrix} T_1 & 0\\ 0 & 0 \end{pmatrix} = \left(Q|T|^2 Q\right)^{\frac{1}{2}} \ge Q|T|Q = \begin{pmatrix} E & 0\\ 0 & 0 \end{pmatrix}$$

and

$$Q(T^*T)^{\frac{1}{2}}Q \ge Q(T^*QT)^{\frac{1}{2}}Q = \begin{pmatrix} T_1 & 0\\ 0 & 0 \end{pmatrix}.$$

Hence $E = T_1$ and $|T| = \begin{pmatrix} T_1 & F \\ F^* & G \end{pmatrix}$. By straight forward calculation we have

$$\begin{pmatrix} T_1^2 & T_1T_2 \\ T_2^*T_1 & |T_2|^2 + |T_3|^2 \end{pmatrix} = |T|^2 = \begin{pmatrix} T_1^2 + FF^* & T_1F + FG \\ F^*T_1 + GF^* & F^*F + G^2 \end{pmatrix},$$

which implies that F = 0 and $T_1T_2 = 0$. Since T_1 is injective, $T_2 = 0$. Thus $\overline{\operatorname{ran}(T^k)}$ and ker T^{k*} are reducing subspaces. Since T is injective, T_3 is also injective. Therefore we have that $T_3 = 0$. Hence T is self-adjoint. \Box

References

- M. Chō and T. Yamazaki, An operator transform from class A to the class of hyponormal operators and its application, Integr. Equ. Oper. Theory, 53 (2005), 497–508.
- [2] T. Furuta, Invitation to Linear Operators, Taylor and Francis, London (2001).
- [3] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Scientiae Mathematicae 1 (1998), 389-403.
- [4] F. Hansen, An operator inequality, Math. Ann., 246 (1980), 249–250.

158

- [5] I. H. Jeon and I. H. Kim, On operators satisfying $T^*|T^2|T \ge T^*|T|^2T$, Linear Algebra and its Applications, **418** (2006), 854–862.
- [6] I. H. Jeon, I. H. Kim, K. Tanahashi and A. Uchiyama, Conditions implying self-adjointness of operators, Integr. Equ. Oper. Theory, 61 (2008), 549–557.
- [7] I. H. Kim, The Fuglede-Putnam theorem for (p, k)-quasihyponormal operators, J. Ineq. Appl., (2006), 397–403.
- [8] C. R. Putnam, An inequality for the area of hyponormal spectra, Math. J., 116 (1970), 323–330.
- [9] I. H. Sheth, On hyponormal operators, Proc. Amer. Math. Soc., 17 (1966), 998– 1000.
- [10] K. Tanahashi, I. H. Jeon, I. H. Kim and A. Uchiyama, Quasinilpotent part of class A or (p, k)-quasihyponormal operators, Operator Theory: Advanced and Applications, Birkhauser Verlag Basel, 181 (2009), 199–210.
- [11] J. P. Williams, Operators similar to their adjoints, Proc. Amer. Math. Soc., 20 (1969), 121–123.

Department of Industrial Management Ansan College of Technology 425-792, Korea *E-mail*: ghok6096@act.ac.kr

Department of Mathematics Education Seoul National University of Education Seoul 137-742, Korea *E-mail*: jihmath@snue.ac.kr