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NONBINARY INCIDENCE CODES OF (n, n− 1, j)-POSET

Yan Longhe

Abstract. Let P be a (n, n − 1, j)-poset, which is a partially or-
dered set of cardinality n with n − 1 maximal elements and j (1 ≤
j ≤ n − 1) minimal elements, and P ∗ the dual poset of P . In this
paper, we obtain two types of incidence codes of nonempty proper
subset S of P and P ∗, respectively, by using Bogart’s method [1]
(see Theorem 3.3).

1. Introduction

Let P be a partially ordered set (or poset, for short) labelled as
{x1, · · · , xn} and ordered by a relation ≤. Let N be an integer > 2
and let AN = {0, 1, 2, · · · , N − 1} denote the commutative ring of inte-
gers modulo N . (If N is a prime number, AN is a finite field.) Let An

N

be the set of n-tuples over AN . The set An
N has Nn members and it is

an abelian group under addition modulo N . Also, the set An
N forms a

free module over AN with the standard basis ex, x ∈ P , where

ex = (ex(1), · · · , ex(n))and ex(j) = δ(x, xj) =

{
1 if x = xj,

0 otherwise.

We define a code over AN as a submodule of An
N .

In [1], Bogart introduced a method for constructing incidence codes
over a finite field from a poset. When above method is applied to the
subsets of a set, ordered by set inclusion, it yields the well known Reed-
Muller codes. Applying to a larger class of posets (Eulerian posets with
the least upper bound property), it yields majority logic decodable codes
quite analogous to Reed-Muller codes.

Recently, in [3], authors investigated binary linear (n, n− 1, j)-poset
codes was investigated (the reference [2] gave a full detail of the poset
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codes), where (n, n− 1, j)-poset is a partially ordered set of cardinality
n with n− 1 maximal elements and j (1 ≤ j ≤ n− 1) minimal elements.
The Hass diagram of (n, n− 1, j)-poset is given by:
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Figure 1

In this paper, we obtain, respectively, nonbinary incidence codes over
AN from (n, n− 1, j)-poset and its dual poset:
Theorem 3.3 Let P be a (n, n − 1, j)-poset and P ∗ the dual poset of
P . For each nonempty proper subset S of P and P ∗, we have

RM(P, S) =

{
[n, |S|, 1]-code if S 6= {x1},
[n, 1, n− j + 1]-code if S = {x1}

and

RM(P ∗, S) =

{
[n, |S|, 1]-code if S 6⊆ Q−,

[n, |S|, 2]-code if S ⊆ Q−.

2. Quick review of the incidence codes of poset over AN

Let P , AN and An
N be as in section 1. The incidence algebra I(P,AN)

of P over AN is the AN -algebra of all functions f : Int(P ) → AN , where
Int(P ) is the set of intervals [xi, xj] = {xk ∈ P | xi ≤ xk ≤ xj} of P
when xi is less than or equal to xj, write f(xi, xj) for f([xi, xj]) and
multiplication (or convolution) is defined by

fg(xi, xj) =
∑

xi≤xk≤xj

f(xi, xk)g(xk, xj).

It is easy to see that I(P,AN) is an associative AN -algebra with (two-
side) identity δ. If Z is the matrix given by

Zij = ζ(xi, xj) =

{
1 if xi ≤ xj,

0 otherwise,
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then Z has an inverse M = (Mij) (over the integers) and the Möbius
function of P is given by Mij = µ(xi, xj), that is, the relation µζ = δ is
equivalent to

(2.1) µ(xi, xj) =

{
1 if xi = xj,

−∑
xi≤xk<xj

µ(xi, xk) if xi < xj.

The fundamental theorem of Möbius inversion(denoted by MIF here-
after) is:

(MIF) If f and g are functions defined on P with values in an abelian
group, then

f(x) =
∑
y≥x

g(y) ⇐⇒ g(x) =
∑
y≥x

µ(x, y)f(y).

For each x ∈ P , the vectors vx = (vx(1), · · · , vx(n)) defined by

(2.2) vx(j) = ζ(x, xj)

form a basis for An
N since, by MIF, each ex is a linear combination of

the vectors vx, i.e.,

ex =
∑

y∈P : y≥x

µ(x, y)vy.

Thus, if v =
∑

x∈P axvx =
∑

x∈P bxex ∈ An
N , then the relation between

ax and bx is given by

(2.3) ax =
∑
z≤x

µ(z, x)bz.

For each nonempty subset S of P , let ICN(P, S) be the submodule
of An

N spanned by the elements vs for s ∈ S. This is an |S|-dimensional
linear nonbinary code over AN . The codes ICN(P, S) is called the inci-
dence codes of P over AN .

3. Nonbinary incidence codes of (n, n− 1, j)-poset over AN

For the fixed integers j and n with 1 ≤ j ≤ n − 1 let P =
{x1, x2, · · · , xn} be a (n, n − 1, j)-poset (see Figure 1). By rearranging
the elements of P we can separate P into two disjoint subposets, say Q
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and R, where without loss of generality we may assume that (see Figure
2)
(3.1)



Q = {x1, x2, · · · , xk} is a (k, k − 1, 1)-poset, where k = n− j + 1,
in which x1 < xi for each i = 2, 3, · · · , k;

R = {xk+1, · · · , xn} is an anti-chain with (n− k) elements.
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Figure 2

Let P ∗ denote the dual poset of P , i.e., P ∗ is a poset on the same set
as P , but such that x ≤ y in P ∗ if and only if y ≤ x in P . Note that if
j = 1, then Q = P and R = ∅. For convenience, put P− = P − {x1},
Q− = Q− {x1} and R+ = R ∪ {x1} as set, i.e.,

(3.2) P = P ∗ = {x1} ∪R ∪Q− = R+ ∪Q− (as set, disjoint union).

By (2.1) we have the Möbius function of P (resp., of P ∗)

(3.3) µ(x, y) =





1, if x = y,

−1, if x = x1 and y ∈ Q− in P

(resp., if x ∈ Q− and y = x1 in P ∗),
0, otherwise.

Proposition 3.1. The Möbius inversion formula on P and P ∗ is,
respectively, given by
(3.4a)

f(x) =
∑
y≥x

g(y) ⇐⇒
{

f(x) = g(x), for all x ∈ P− in P ,

f(x1) =
∑

y∈Q g(y) in P ,

and
(3.4b)

f(x) =
∑
y≥x

g(y) ⇐⇒
{

f(x) = g(x) for all x ∈ R+ in P ∗,
f(x) = g(x) + g(x1) for all x ∈ Q− in P ∗.
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Proof. By MIF we have

g(x) =
∑
y≥x

µ(x, y)f(y) for all x in P (resp., P ∗).

Thus by (3.3), g(x) = f(x) if x ∈ P− in P (resp., x ∈ R+ in P ∗). Also,
in P

g(x1) =
∑
y≥x1

µ(x1, y)f(y) = f(x1) +
∑
y>x1

µ(x1, y)f(y)

= f(x1)−
∑

y∈Q−
f(y)

= f(x1)−
∑

y∈Q−

∑
z≥y

g(z) = f(x1)−
∑

y∈Q−
g(y).

Thus

f(x1) = g(x1) +
∑

y∈Q−
g(y) =

∑
y∈Q

g(y).

Similarly, for x ∈ Q− in P ∗

g(x) =
∑
y≥x

µ(x, y)f(y) = f(x) +
∑
y>x

µ(x, y)f(y) = f(x)− f(x1)

= f(x)−
∑
y≥x1

g(y) = f(x)− g(x1).

Thus f(x) = g(x1) + g(x).

Proposition 3.2. If v =
∑

x∈P axvx =
∑

x∈P bxex ∈ An
N , then

(3.5a)



vx = ex, for all x ∈ P− in P (or, for all x ∈ R+ in P ∗)
vx1 =

∑
x∈Q ex in P

vx = ex + ex1 for all x ∈ Q− in P ∗;

(3.5b)





ax = bx, for all x ∈ R+ in P (or, for all x ∈ P− in P ∗)
ax = bx − bx1 , for all x ∈ Q− in P

ax1 = bx1 −
∑

x∈Q− bx in P ∗.

Proof. Since

ex(i) = δ(x, xi) = (µζ)(x, xi) =
∑

x≤y≤xi

µ(x, y)ζ(y, xi) =
∑

x≤y≤xi

µ(x, y)vy(i),
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each ex is a linear combination of the vectors vx, that is,

ex =
∑
y≥x

µ(x, y)vy for all x in P (resp., P ∗)

⇐⇒ vx =
∑
y≥x

ex (by MIF)

⇐⇒





vx = ex for all x ∈ P− in P (resp., x ∈ R+ in P ∗),
vx1 =

∑
x∈Q ey in P,

vx = ex + ex1 for all x ∈ Q− in P ∗. (by (3.4))

On the other hand, we have

∑
x∈P

bxex =
∑
x∈P

bx

(∑
y≥x

µ(x, y)vy

)
=

∑
y∈P

(∑
z≤y

µ(z, y)bz

)
vy.

Thus we obtain

∑
x∈P

axvx =
∑
x∈P

bxex =
∑
x∈P

(∑
z≤x

µ(z, x)bz

)
vx

=
∑

x∈R+

(∑
z≤x

µ(z, x)bz

)
vx +

∑

x∈Q−

(∑
z≤x

µ(z, x)bz

)
vx (by (3.2))

=
∑

x∈R+

bxvx +
∑

x∈Q−
(bx − bx1) vx (by (3.3))

and

∑
x∈P ∗

axvx =
∑
x∈P ∗

bxex =
∑
x∈P ∗

(∑
z≤x

µ(z, x)bz

)
vx

=
∑

x∈R+

(∑
z≤x

µ(z, x)bz

)
vx +

∑

x∈Q−

(∑
z≤x

µ(z, x)bz

)
vx (by (3.2))

=
∑
z≤x1

µ(z, x1)bzvx1 +
∑
x∈R

bxvx +
∑

x∈Q−
bxvx (by (3.3))

=


bx1 −

∑

x∈Q−
bx


 vx1 +

∑

x∈P−
bxvx.
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Theorem 3.3. Let P be a (n, n − 1, j)-poset given by (3.1) and P ∗

the dual poset of P . For each nonempty proper subset S of P and P ∗,
we have

RM(P, S) =

{
[n, |S|, 1]-code if S 6= {x1},
[n, 1, n− j + 1]-code if S = {x1}

and

RM(P ∗, S) =

{
[n, |S|, 1]-code if S 6⊆ Q−,

[n, |S|, 2]-code if S ⊆ Q−.

Proof. Let S be a nonempty proper subset of P . Using (3.5a) we can
obtain incidence codes RM(P, S) =

{∑
x∈S axvx | ax ∈ AN

}
as follows:

If S = {x1}, then

(3.6) RM(P, S) =

{
a

∑
x∈Q

ex | a ∈ AN

}
.

It is the [n, 1, |Q|]-code, where |Q| = k = n − j + 1. If x1 6∈ S, then
S = S ∩ P− and

(3.7) RM(P, S) =

{ ∑

x∈S∩P−
axex | ax ∈ AN

}
.

If x1 ∈ S, then S = {x1} ∪ (S ∩ P−) and

(3.8) RM(P, S) =

{
ax1

∑
x∈Q

ex +
∑

x∈S∩P−
axex | ax1 , ax ∈ AN

}
.

From (3.7) and (3.8), if S 6= {x1}, then each RM(P, S) is a [n, |S|, 1]-
code. Similarly, from (3.5a), for any subset S of Q− in P ∗,

(3.9) RM(P ∗, S) =





∑

x∈S∩Q−
axex1 +

∑

x∈S∩Q−
axex | ax ∈ AN



 .

It is a [n, |S|, 2]-code. If S 6⊆ Q− in P ∗, then let
∑

x∈S axvx = v ∈
RM(P ∗, S). Then by (3.5b) we have ax = bx for each x ∈ S ∩ P− in
P ∗. If ax 6= 0 for some x ∈ S ∩ P− in P ∗, then bx 6= 0 for each x. On
the other hand, if ax is zero for each x ∈ S ∩ P− in P (resp., P ∗), then
simply remove all elements x ∈ S ∩ P− in P (resp., P ∗) from S to get
S ′, note that v ∈ RM(P, S ′) (resp., RM(P ∗, S ′)). Since S ′ = {x1} or
S ′ = ∅, by repeating the argument, we complete the proof.
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Note that RM(P, P ) = RM(P ∗, P ∗) is the entire space An
N which is

the trivial perfect code.

Corollary 3.4. RM(P, {x1}) is a perfect code if and only if q = 2,
n ≥ 3 is odd and j = 1. In this case, RM(P, {x1}) is the binary
repetition code. Also, RM(P ∗, S), where S ⊆ Q−, is not a perfect code.

Proof. RM(P, {x1}) is perfect if and only if

q

[ (n−j+1)−1
2 ]∑

l=0

(
n

l

)
(q − 1)l = qn ⇐⇒

[n−j
2 ]∑

l=0

(
n

l

)
(q − 1)l = qn−1

⇐⇒ q = 2, j = 1and n ≥ 3 is odd number.

Similarly, RM(P ∗, S) is perfect if and only if

q

[ 2−1
2 ]∑

l=0

(
n

l

)
(q − 1)l = qn ⇐⇒ qn−1 = 1 ⇐⇒ n = 1.

Thus RM(P ∗, Q−) is not perfect since n ≥ 2.

Example.
Let P = {x1, x2, x3, x4} be a (4, 3, 2)-poset and P ∗ the dual of P which

are given by:

P :
¡

¡¡
•
x1

•x2 •x3

•
x4

P ∗ :
@

@@
•
x2

•
x3

•x1

•
x4

Then

RM(P, P ) = RM(P ∗, P ∗) = Z4
2 (it is the trivial perfect code).

RM(P, {x1, x2, x3}) =

{
(1, 1, 1, 0) (1, 1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 0)
(0, 0, 0, 0) (0, 0, 1, 0) (0, 1, 0, 0) (0, 1, 1, 0)

}
:

[4, 3, 1]-code,

RM(P, {x1, x2, x4}) =

{
(1, 1, 1, 0) (1, 1, 1, 1) (1, 0, 1, 0) (1, 0, 1, 1)
(0, 0, 0, 0) (0, 0, 0, 1) (0, 1, 0, 0) (0, 1, 0, 1)

}

: [4, 3, 1]-code,
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RM(P, {x1, x3, x4}) =

{
(1, 1, 1, 0) (1, 1, 1, 1) (1, 1, 0, 0) (1, 1, 0, 1)
(0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 1, 0) (0, 0, 1, 1)

}

: [4, 3, 1]-code,

RM(P, {x2, x3, x4}) =

{
(0, 1, 1, 0) (0, 1, 1, 1) (0, 1, 0, 0) (0, 1, 0, 1)
(0, 0, 1, 0) (0, 0, 1, 1) (0, 0, 0, 0) (0, 0, 0, 1)

}

: [4, 3, 1]-code.

RM(P, {x1, x2}) = {(0, 0, 0, 0), (1, 1, 1, 0), (1, 0, 1, 0), (0, 1, 0, 0)}
: [4, 2, 1]-code,

RM(P, {x1, x3}) = {(0, 0, 0, 0), (1, 1, 1, 0), (1, 1, 0, 0), (0, 0, 1, 0)}
: [4, 2, 1]-code,

RM(P, {x1, x4}) = {(0, 0, 0, 0), (1, 1, 1, 0), (1, 1, 1, 1), (0, 0, 0, 1)}
: [4, 2, 1]-code,

RM(P, {x2, x3}) = {(0, 0, 0, 0), (0, 1, 1, 0), (0, 1, 0, 0), (0, 0, 1, 0)}
: [4, 2, 1]-code,

RM(P, {x2, x4}) = {(0, 0, 0, 0), (0, 1, 0, 0), (0, 1, 0, 1), (0, 0, 0, 1)}
: [4, 2, 1]-code,

RM(P, {x3, x4}) = {(0, 0, 0, 0), (0, 0, 1, 0), (0, 0, 1, 1), (0, 0, 0, 1)}
: [4, 2, 1]-code,

RM(P, {x1}) = {(0, 0, 0, 0), (1, 1, 1, 0)}
: [4, 1, 3]-code,

RM(P, {x2}) = {(0, 0, 0, 0), (0, 1, 0, 0)}
: [4, 1, 1]-code,
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RM(P, {x3}) = {(0, 0, 0, 0), (0, 0, 1, 0)}
: [4, 1, 1]-code,

RM(P, {x4}) = {(0, 0, 0, 0), (0, 0, 0, 1)}
: [4, 1, 1]-code,

and

RM(P ∗, {x1, x2, x3}) =

{
(0, 1, 0, 0) (1, 1, 1, 0) (1, 0, 0, 0) (0, 0, 1, 0)
(1, 1, 0, 0) (0, 1, 1, 0) (0, 0, 0, 0) (1, 0, 1, 0)

}

: [4, 3, 1]-code,

RM(P ∗, {x1, x2, x4}) =

{
(0, 1, 0, 0) (0, 1, 0, 1) (1, 0, 0, 0) (1, 0, 0, 1)
(1, 1, 0, 0) (1, 1, 0, 1) (0, 0, 0, 0) (0, 0, 0, 1)

}

: [4, 3, 1]-code,

RM(P ∗, {x1, x3, x4}) =

{
(0, 0, 1, 0) (0, 0, 1, 1) (1, 0, 0, 0) (1, 0, 0, 1)
(1, 0, 1, 0) (1, 0, 1, 1) (0, 0, 0, 0) (0, 0, 0, 1)

}

: [4, 3, 1]-code,

RM(P ∗, {x2, x3, x4}) =

{
(0, 1, 1, 0) (0, 1, 1, 1) (1, 1, 0, 0) (1, 1, 0, 1)
(1, 0, 1, 0) (1, 0, 1, 1) (0, 0, 0, 0) (0, 0, 0, 1)

}

: [4, 3, 1]-code.

RM(P ∗, {x1, x2}) = {(0, 1, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0), (0, 0, 0, 0)}
: [4, 2, 1]-code,

RM(P ∗, {x1, x3}) = {(0, 0, 1, 0), (1, 0, 0, 0), (1, 0, 1, 0), (0, 0, 0, 0)}
: [4, 2, 1]-code,

RM(P ∗, {x1, x4}) = {(1, 0, 0, 0), (1, 0, 0, 1), (0, 0, 0, 0), (0, 0, 0, 1)}
: [4, 2, 1]-code,

RM(P ∗, {x2, x3}) = {(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 0, 0), (1, 0, 1, 0)}
: [4, 2, 2]-code,
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RM(P ∗, {x2, x4}) = {(1, 1, 0, 0), (1, 1, 0, 1), (0, 0, 0, 0), (0, 0, 0, 1)}
: [4, 2, 1]-code,

RM(P ∗, {x3, x4}) = {(1, 0, 1, 0), (1, 0, 1, 1), (0, 0, 0, 0), (0, 0, 0, 1)}
: [4, 2, 1]-code,

RM(P ∗, {x1}) = {(0, 0, 0, 0), (1, 0, 0, 0)} : [4, 1, 1]-code,

RM(P ∗, {x2}) = {(0, 0, 0, 0), (1, 1, 0, 0)} : [4, 1, 2]-code,

RM(P ∗, {x3}) = {(0, 0, 0, 0), (1, 0, 1, 0)} : [4, 1, 2]-code,

RM(P ∗, {x4}) = {(0, 0, 0, 0), (0, 0, 0, 1)} : [4, 1, 1]-code.
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