NONBINARY INCIDENCE CODES OF $(n, n-1, j)$-POSET

Yan Longhe

Abstract

Let P be a $(n, n-1, j)$-poset, which is a partially ordered set of cardinality n with $n-1$ maximal elements and $j(1 \leq$ $j \leq n-1$) minimal elements, and P^{*} the dual poset of P. In this paper, we obtain two types of incidence codes of nonempty proper subset S of P and P^{*}, respectively, by using Bogart's method [1] (see Theorem 3.3).

1. Introduction

Let P be a partially ordered set (or poset, for short) labelled as $\left\{x_{1}, \cdots, x_{n}\right\}$ and ordered by a relation \leq. Let N be an integer >2 and let $A_{N}=\{0,1,2, \cdots, N-1\}$ denote the commutative ring of integers modulo N. (If N is a prime number, A_{N} is a finite field.) Let A_{N}^{n} be the set of n-tuples over A_{N}. The set A_{N}^{n} has N^{n} members and it is an abelian group under addition modulo N. Also, the set A_{N}^{n} forms a free module over A_{N} with the standard basis $e_{x}, x \in P$, where

$$
e_{x}=\left(e_{x}(1), \cdots, e_{x}(n)\right) \text { and } \quad e_{x}(j)=\delta\left(x, x_{j}\right)= \begin{cases}1 & \text { if } x=x_{j} \\ 0 & \text { otherwise }\end{cases}
$$

We define a code over A_{N} as a submodule of A_{N}^{n}.
In [1], Bogart introduced a method for constructing incidence codes over a finite field from a poset. When above method is applied to the subsets of a set, ordered by set inclusion, it yields the well known ReedMuller codes. Applying to a larger class of posets (Eulerian posets with the least upper bound property), it yields majority logic decodable codes quite analogous to Reed-Muller codes.

Recently, in [3], authors investigated binary linear $(n, n-1, j)$-poset codes was investigated (the reference [2] gave a full detail of the poset

Received March 17, 2009. Revised May 24, 2009.
2000 Mathematics Subject Classification: 11H71, 11 T 71.
Key words and phrases: $(n, n-1, j)$-poset, nonbinary incidence codes.
codes), where ($n, n-1, j$)-poset is a partially ordered set of cardinality n with $n-1$ maximal elements and $j(1 \leq j \leq n-1)$ minimal elements. The Hass diagram of ($n, n-1, j$)-poset is given by:

Figure 1
In this paper, we obtain, respectively, nonbinary incidence codes over A_{N} from ($n, n-1, j$)-poset and its dual poset:
Theorem 3.3 Let P be a $(n, n-1, j)$-poset and P^{*} the dual poset of P. For each nonempty proper subset S of P and P^{*}, we have

$$
R M(P, S)= \begin{cases}{[n,|S|, 1] \text {-code }} & \text { if } S \neq\left\{x_{1}\right\} \\ {[n, 1, n-j+1] \text {-code }} & \text { if } S=\left\{x_{1}\right\}\end{cases}
$$

and

$$
R M\left(P^{*}, S\right)= \begin{cases}{[n,|S|, 1] \text {-code }} & \text { if } S \nsubseteq Q^{-}, \\ {[n,|S|, 2] \text {-code }} & \text { if } S \subseteq Q^{-}\end{cases}
$$

2. Quick review of the incidence codes of poset over A_{N}

Let P, A_{N} and A_{N}^{n} be as in section 1. The incidence algebra $I\left(P, A_{N}\right)$ of P over A_{N} is the A_{N}-algebra of all functions $f: \operatorname{Int}(P) \rightarrow A_{N}$, where $\operatorname{Int}(P)$ is the set of intervals $\left[x_{i}, x_{j}\right]=\left\{x_{k} \in P \mid x_{i} \leq x_{k} \leq x_{j}\right\}$ of P when x_{i} is less than or equal to x_{j}, write $f\left(x_{i}, x_{j}\right)$ for $f\left(\left[x_{i}, x_{j}\right]\right)$ and multiplication (or convolution) is defined by

$$
f g\left(x_{i}, x_{j}\right)=\sum_{x_{i} \leq x_{k} \leq x_{j}} f\left(x_{i}, x_{k}\right) g\left(x_{k}, x_{j}\right) .
$$

It is easy to see that $I\left(P, A_{N}\right)$ is an associative A_{N}-algebra with (twoside) identity δ. If Z is the matrix given by

$$
Z_{i j}=\zeta\left(x_{i}, x_{j}\right)= \begin{cases}1 & \text { if } x_{i} \leq x_{j} \\ 0 & \text { otherwise }\end{cases}
$$

then Z has an inverse $M=\left(M_{i j}\right)$ (over the integers) and the Möbius function of P is given by $M_{i j}=\mu\left(x_{i}, x_{j}\right)$, that is, the relation $\mu \zeta=\delta$ is equivalent to

$$
\mu\left(x_{i}, x_{j}\right)= \begin{cases}1 & \text { if } x_{i}=x_{j} \tag{2.1}\\ -\sum_{x_{i} \leq x_{k}<x_{j}} \mu\left(x_{i}, x_{k}\right) & \text { if } x_{i}<x_{j}\end{cases}
$$

The fundamental theorem of Möbius inversion(denoted by MIF hereafter) is:
(MIF) If f and g are functions defined on P with values in an abelian group, then

$$
f(x)=\sum_{y \geq x} g(y) \Longleftrightarrow g(x)=\sum_{y \geq x} \mu(x, y) f(y) .
$$

For each $x \in P$, the vectors $v_{x}=\left(v_{x}(1), \cdots, v_{x}(n)\right)$ defined by

$$
\begin{equation*}
v_{x}(j)=\zeta\left(x, x_{j}\right) \tag{2.2}
\end{equation*}
$$

form a basis for A_{N}^{n} since, by MIF, each e_{x} is a linear combination of the vectors v_{x}, i.e.,

$$
e_{x}=\sum_{y \in P: y \geq x} \mu(x, y) v_{y} .
$$

Thus, if $v=\sum_{x \in P} a_{x} v_{x}=\sum_{x \in P} b_{x} e_{x} \in A_{N}^{n}$, then the relation between a_{x} and b_{x} is given by

$$
\begin{equation*}
a_{x}=\sum_{z \leq x} \mu(z, x) b_{z} . \tag{2.3}
\end{equation*}
$$

For each nonempty subset S of P, let $I C_{N}(P, S)$ be the submodule of A_{N}^{n} spanned by the elements v_{s} for $s \in S$. This is an $|S|$-dimensional linear nonbinary code over A_{N}. The codes $I C_{N}(P, S)$ is called the incidence codes of P over A_{N}.

3. Nonbinary incidence codes of $(n, n-1, j)$-poset over A_{N}

For the fixed integers j and n with $1 \leq j \leq n-1$ let $P=$ $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be a $(n, n-1, j)$-poset (see Figure 1). By rearranging the elements of P we can separate P into two disjoint subposets, say Q
and R, where without loss of generality we may assume that (see Figure 2)

$$
\left\{\begin{array}{l}
Q=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\} \text { is a }(k, k-1,1) \text {-poset, where } k=n-j+1 \tag{3.1}\\
\quad \text { in which } x_{1}<x_{i} \text { for each } i=2,3, \cdots, k \\
R=\left\{x_{k+1}, \cdots, x_{n}\right\} \text { is an anti-chain with }(n-k) \text { elements. }
\end{array}\right.
$$

Figure 2
Let P^{*} denote the dual poset of P, i.e., P^{*} is a poset on the same set as P, but such that $x \leq y$ in P^{*} if and only if $y \leq x$ in P. Note that if $j=1$, then $Q=P$ and $R=\emptyset$. For convenience, put $P^{-}=P-\left\{x_{1}\right\}$, $Q^{-}=Q-\left\{x_{1}\right\}$ and $R^{+}=R \cup\left\{x_{1}\right\}$ as set, i.e.,

$$
\begin{equation*}
P=P^{*}=\left\{x_{1}\right\} \cup R \cup Q^{-}=R^{+} \cup Q^{-} \text {(as set, disjoint union). } \tag{3.2}
\end{equation*}
$$

By (2.1) we have the Möbius function of P (resp., of P^{*})

$$
\mu(x, y)= \begin{cases}1, & \text { if } x=y \tag{3.3}\\ -1, & \text { if } x=x_{1} \text { and } y \in Q^{-} \text {in } P \\ \left.\quad \text { (resp., if } x \in Q^{-} \text {and } y=x_{1} \text { in } P^{*}\right), \\ 0, & \text { otherwise. }\end{cases}
$$

Proposition 3.1. The Möbius inversion formula on P and P^{*} is, respectively, given by

$$
f(x)=\sum_{y \geq x} g(y) \Longleftrightarrow\left\{\begin{array}{l}
f(x)=g(x), \text { for all } x \in P^{-} \text {in } P, \tag{3.4a}\\
f\left(x_{1}\right)=\sum_{y \in Q} g(y) \text { in } P,
\end{array}\right.
$$

and
$f(x)=\sum_{y \geq x} g(y) \Longleftrightarrow\left\{\begin{array}{l}f(x)=g(x) \quad \text { for all } x \in R^{+} \text {in } P^{*}, \\ f(x)=g(x)+g\left(x_{1}\right) \quad \text { for all } x \in Q^{-} \text {in } P^{*} .\end{array}\right.$

Proof. By MIF we have

$$
g(x)=\sum_{y \geq x} \mu(x, y) f(y) \quad \text { for all } x \text { in } P\left(\text { resp., } P^{*}\right)
$$

Thus by (3.3), $g(x)=f(x)$ if $x \in P^{-}$in P (resp., $x \in R^{+}$in P^{*}). Also, in P

$$
\begin{aligned}
g\left(x_{1}\right) & =\sum_{y \geq x_{1}} \mu\left(x_{1}, y\right) f(y)=f\left(x_{1}\right)+\sum_{y>x_{1}} \mu\left(x_{1}, y\right) f(y) \\
& =f\left(x_{1}\right)-\sum_{y \in Q^{-}} f(y) \\
& =f\left(x_{1}\right)-\sum_{y \in Q^{-}} \sum_{z \geq y} g(z)=f\left(x_{1}\right)-\sum_{y \in Q^{-}} g(y) .
\end{aligned}
$$

Thus

$$
f\left(x_{1}\right)=g\left(x_{1}\right)+\sum_{y \in Q^{-}} g(y)=\sum_{y \in Q} g(y) .
$$

Similarly, for $x \in Q^{-}$in P^{*}

$$
\begin{aligned}
g(x) & =\sum_{y \geq x} \mu(x, y) f(y)=f(x)+\sum_{y>x} \mu(x, y) f(y)=f(x)-f\left(x_{1}\right) \\
& =f(x)-\sum_{y \geq x_{1}} g(y)=f(x)-g\left(x_{1}\right) .
\end{aligned}
$$

Thus $f(x)=g\left(x_{1}\right)+g(x)$.
Proposition 3.2. If $v=\sum_{x \in P} a_{x} v_{x}=\sum_{x \in P} b_{x} e_{x} \in A_{N}^{n}$, then

$$
\begin{cases}v_{x}=e_{x}, & \text { for all } x \in P^{-} \text {in } P\left(\text { or, for all } x \in R^{+} \text {in } P^{*}\right) \tag{3.5a}\\ v_{x_{1}}=\sum_{x \in Q} e_{x} & \text { in } P \\ v_{x}=e_{x}+e_{x_{1}} & \text { for all } x \in Q^{-} \text {in } P^{*} ;\end{cases}
$$

$$
\left\{\begin{array}{l}
\left.a_{x}=b_{x}, \text { for all } x \in R^{+} \text {in } P \text { (or, for all } x \in P^{-} \text {in } P^{*}\right) \tag{3.5b}\\
a_{x}=b_{x}-b_{x_{1}}, \text { for all } x \in Q^{-} \text {in } P \\
a_{x_{1}}=b_{x_{1}}-\sum_{x \in Q^{-}} b_{x} \text { in } P^{*}
\end{array}\right.
$$

Proof. Since

$$
e_{x}(i)=\delta\left(x, x_{i}\right)=(\mu \zeta)\left(x, x_{i}\right)=\sum_{x \leq y \leq x_{i}} \mu(x, y) \zeta\left(y, x_{i}\right)=\sum_{x \leq y \leq x_{i}} \mu(x, y) v_{y}(i),
$$

each e_{x} is a linear combination of the vectors v_{x}, that is,

$$
\begin{aligned}
& \left.e_{x}=\sum_{y \geq x} \mu(x, y) v_{y} \quad \text { for all } x \text { in } P \text { (resp., } P^{*}\right) \\
\Longleftrightarrow & v_{x}=\sum_{y \geq x} e_{x} \quad(\text { by MIF }) \\
\Longleftrightarrow & \begin{cases}v_{x}=e_{x} & \text { for all } x \in P^{-} \text {in } P\left(\text { resp., } x \in R^{+} \text {in } P^{*}\right), \\
v_{x_{1}}=\sum_{x \in Q} e_{y} & \text { in } P, \\
v_{x}=e_{x}+e_{x_{1}} & \text { for all } x \in Q^{-} \text {in } P^{*} . \quad(\text { by }(3.4))\end{cases}
\end{aligned}
$$

On the other hand, we have

$$
\sum_{x \in P} b_{x} e_{x}=\sum_{x \in P} b_{x}\left(\sum_{y \geq x} \mu(x, y) v_{y}\right)=\sum_{y \in P}\left(\sum_{z \leq y} \mu(z, y) b_{z}\right) v_{y} .
$$

Thus we obtain

$$
\begin{aligned}
\sum_{x \in P} a_{x} v_{x} & =\sum_{x \in P} b_{x} e_{x}=\sum_{x \in P}\left(\sum_{z \leq x} \mu(z, x) b_{z}\right) v_{x} \\
& =\sum_{x \in R^{+}}\left(\sum_{z \leq x} \mu(z, x) b_{z}\right) v_{x}+\sum_{x \in Q^{-}}\left(\sum_{z \leq x} \mu(z, x) b_{z}\right) v_{x} \quad(\text { by }(3.2)) \\
& =\sum_{x \in R^{+}} b_{x} v_{x}+\sum_{x \in Q^{-}}\left(b_{x}-b_{x_{1}}\right) v_{x} \quad(\text { by }(3.3))
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{x \in P^{*}} a_{x} v_{x} & =\sum_{x \in P^{*}} b_{x} e_{x}=\sum_{x \in P^{*}}\left(\sum_{z \leq x} \mu(z, x) b_{z}\right) v_{x} \\
& =\sum_{x \in R^{+}}\left(\sum_{z \leq x} \mu(z, x) b_{z}\right) v_{x}+\sum_{x \in Q^{-}}\left(\sum_{z \leq x} \mu(z, x) b_{z}\right) v_{x} \quad(\text { by (3.2)) } \\
& =\sum_{z \leq x_{1}} \mu\left(z, x_{1}\right) b_{z} v_{x_{1}}+\sum_{x \in R} b_{x} v_{x}+\sum_{x \in Q^{-}} b_{x} v_{x} \quad(\text { by (3.3)) } \\
& =\left(b_{x_{1}}-\sum_{x \in Q^{-}} b_{x}\right) v_{x_{1}}+\sum_{x \in P^{-}} b_{x} v_{x} .
\end{aligned}
$$

Theorem 3.3. Let P be a $(n, n-1, j)$-poset given by (3.1) and P^{*} the dual poset of P. For each nonempty proper subset S of P and P^{*}, we have

$$
R M(P, S)= \begin{cases}{[n,|S|, 1] \text {-code }} & \text { if } S \neq\left\{x_{1}\right\} \\ {[n, 1, n-j+1] \text {-code }} & \text { if } S=\left\{x_{1}\right\}\end{cases}
$$

and

$$
R M\left(P^{*}, S\right)= \begin{cases}{[n,|S|, 1] \text {-code }} & \text { if } S \nsubseteq Q^{-}, \\ {[n,|S|, 2] \text {-code }} & \text { if } S \subseteq Q^{-}\end{cases}
$$

Proof. Let S be a nonempty proper subset of P. Using (3.5a) we can obtain incidence codes $R M(P, S)=\left\{\sum_{x \in S} a_{x} v_{x} \mid a_{x} \in A_{N}\right\}$ as follows: If $S=\left\{x_{1}\right\}$, then

$$
\begin{equation*}
R M(P, S)=\left\{a \sum_{x \in Q} e_{x} \mid a \in A_{N}\right\} . \tag{3.6}
\end{equation*}
$$

It is the $[n, 1,|Q|]$-code, where $|Q|=k=n-j+1$. If $x_{1} \notin S$, then $S=S \cap P^{-}$and

$$
\begin{equation*}
R M(P, S)=\left\{\sum_{x \in S \cap P^{-}} a_{x} e_{x} \mid a_{x} \in A_{N}\right\} . \tag{3.7}
\end{equation*}
$$

If $x_{1} \in S$, then $S=\left\{x_{1}\right\} \cup\left(S \cap P^{-}\right)$and

$$
\begin{equation*}
R M(P, S)=\left\{a_{x_{1}} \sum_{x \in Q} e_{x}+\sum_{x \in S \cap P^{-}} a_{x} e_{x} \mid a_{x_{1}}, a_{x} \in A_{N}\right\} . \tag{3.8}
\end{equation*}
$$

From (3.7) and (3.8), if $S \neq\left\{x_{1}\right\}$, then each $R M(P, S)$ is a $[n,|S|, 1]$ code. Similarly, from (3.5a), for any subset S of Q^{-}in P^{*},

$$
\begin{equation*}
R M\left(P^{*}, S\right)=\left\{\sum_{x \in S \cap Q^{-}} a_{x} e_{x_{1}}+\sum_{x \in S \cap Q^{-}} a_{x} e_{x} \mid a_{x} \in A_{N}\right\} . \tag{3.9}
\end{equation*}
$$

It is a $[n,|S|, 2]$-code. If $S \nsubseteq Q^{-}$in P^{*}, then let $\sum_{x \in S} a_{x} v_{x}=v \in$ $R M\left(P^{*}, S\right)$. Then by (3.5b) we have $a_{x}=b_{x}$ for each $x \in S \cap P^{-}$in P^{*}. If $a_{x} \neq 0$ for some $x \in S \cap P^{-}$in P^{*}, then $b_{x} \neq 0$ for each x. On the other hand, if a_{x} is zero for each $x \in S \cap P^{-}$in P (resp., P^{*}), then simply remove all elements $x \in S \cap P^{-}$in P (resp., P^{*}) from S to get S^{\prime}, note that $v \in R M\left(P, S^{\prime}\right)$ (resp., $R M\left(P^{*}, S^{\prime}\right)$). Since $S^{\prime}=\left\{x_{1}\right\}$ or $S^{\prime}=\emptyset$, by repeating the argument, we complete the proof.

Note that $R M(P, P)=R M\left(P^{*}, P^{*}\right)$ is the entire space A_{N}^{n} which is the trivial perfect code.

Corollary 3.4. $R M\left(P,\left\{x_{1}\right\}\right)$ is a perfect code if and only if $q=2$, $n \geq 3$ is odd and $j=1$. In this case, $R M\left(P,\left\{x_{1}\right\}\right)$ is the binary repetition code. Also, $R M\left(P^{*}, S\right)$, where $S \subseteq Q^{-}$, is not a perfect code.

Proof. $R M\left(P,\left\{x_{1}\right\}\right)$ is perfect if and only if

$$
\begin{aligned}
q \sum_{l=0}^{\left[\frac{(n-j+1)-1}{2}\right]}\binom{n}{l}(q-1)^{l}=q^{n} & \Longleftrightarrow \sum_{l=0}^{\left[\frac{n-j}{2}\right]}\binom{n}{l}(q-1)^{l}=q^{n-1} \\
& \Longleftrightarrow q=2, \quad j=1 \text { and } n \geq 3 \text { is odd number. }
\end{aligned}
$$

Similarly, $R M\left(P^{*}, S\right)$ is perfect if and only if

$$
q \sum_{l=0}^{\left[\frac{2-1}{2}\right]}\binom{n}{l}(q-1)^{l}=q^{n} \Longleftrightarrow q^{n-1}=1 \Longleftrightarrow n=1
$$

Thus $R M\left(P^{*}, Q^{-}\right)$is not perfect since $n \geq 2$.

Example.

Let $P=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ be a $(4,3,2)$-poset and P^{*} the dual of P which are given by:

Then

$$
\begin{gathered}
R M(P, P)=R M\left(P^{*}, P^{*}\right)=\mathbf{Z}_{2}^{4} \quad \text { (it is the trivial perfect code). } \\
R M\left(P,\left\{x_{1}, x_{2}, x_{3}\right\}\right)=\left\{\begin{array}{rrrr}
(1,1,1,0) & (1,1,0,0) & (1,0,1,0) & (1,0,0,0) \\
(0,0,0,0) & (0,0,1,0) & (0,1,0,0) & (0,1,1,0)
\end{array}\right\}:
\end{gathered}
$$

$$
[4,3,1] \text {-code },
$$

$$
R M\left(P,\left\{x_{1}, x_{2}, x_{4}\right\}\right)=\left\{\begin{array}{llll}
(1,1,1,0) & (1,1,1,1) & (1,0,1,0) & (1,0,1,1) \\
(0,0,0,0) & (0,0,0,1) & (0,1,0,0) & (0,1,0,1)
\end{array}\right\}
$$

$$
\left.\begin{array}{c}
R M\left(P,\left\{x_{1}, x_{3}, x_{4}\right\}\right)=\left\{\begin{array}{rrr}
(1,1,1,0) & (1,1,1,1) & (1,1,0,0) \\
(0,0,0,0) & (1,1,0,1) \\
& (0,0,1), 0) & (0,0,1,1)
\end{array}\right\} \\
:[4,3,1]-c o d e
\end{array}\right\}
$$

$$
\begin{array}{ll}
R M\left(P,\left\{x_{3}\right\}\right)=\{(0,0,0,0),(0,0,1,0)\} & :[4,1,1] \text {-code } \\
R M\left(P,\left\{x_{4}\right\}\right)=\{(0,0,0,0),(0,0,0,1)\} & :[4,1,1] \text {-code }
\end{array}
$$

and
$R M\left(P^{*},\left\{x_{1}, x_{2}, x_{3}\right\}\right)=\left\{\begin{array}{llll}(0,1,0,0) & (1,1,1,0) & (1,0,0,0) & (0,0,1,0) \\ (1,1,0,0) & (0,1,1,0) & (0,0,0,0) & (1,0,1,0)\end{array}\right\}$: $[4,3,1]$-code,
$R M\left(P^{*},\left\{x_{1}, x_{2}, x_{4}\right\}\right)=\left\{\begin{array}{llll}(0,1,0,0) & (0,1,0,1) & (1,0,0,0) & (1,0,0,1) \\ (1,1,0,0) & (1,1,0,1) & (0,0,0,0) & (0,0,0,1)\end{array}\right\}$: [4, 3, 1]-code,
$R M\left(P^{*},\left\{x_{1}, x_{3}, x_{4}\right\}\right)=\left\{\begin{array}{llll}(0,0,1,0) & (0,0,1,1) & (1,0,0,0) & (1,0,0,1) \\ (1,0,1,0) & (1,0,1,1) & (0,0,0,0) & (0,0,0,1)\end{array}\right\}$: [4, 3, 1]-code,
$R M\left(P^{*},\left\{x_{2}, x_{3}, x_{4}\right\}\right)=\left\{\begin{array}{llll}(0,1,1,0) & (0,1,1,1) & (1,1,0,0) & (1,1,0,1) \\ (1,0,1,0) & (1,0,1,1) & (0,0,0,0) & (0,0,0,1)\end{array}\right\}$: [4, 3, 1]-code.
$R M\left(P^{*},\left\{x_{1}, x_{2}\right\}\right)=\{(0,1,0,0),(1,0,0,0),(1,1,0,0),(0,0,0,0)\}$
: $[4,2,1]$-code,
$R M\left(P^{*},\left\{x_{1}, x_{3}\right\}\right)=\{(0,0,1,0),(1,0,0,0),(1,0,1,0),(0,0,0,0)\}$
: $[4,2,1]$-code,
$R M\left(P^{*},\left\{x_{1}, x_{4}\right\}\right)=\{(1,0,0,0),(1,0,0,1),(0,0,0,0),(0,0,0,1)\}$
: [4, 2, 1]-code,
$R M\left(P^{*},\left\{x_{2}, x_{3}\right\}\right)=\{(1,1,0,0),(0,1,1,0),(0,0,0,0),(1,0,1,0)\}$

$$
:[4,2,2] \text {-code, }
$$

$$
R M\left(P^{*},\left\{x_{2}, x_{4}\right\}\right)=\{(1,1,0,0),(1,1,0,1),(0,0,0,0),(0,0,0,1)\}
$$

$$
:[4,2,1] \text {-code, }
$$

$R M\left(P^{*},\left\{x_{3}, x_{4}\right\}\right)=\{(1,0,1,0),(1,0,1,1),(0,0,0,0),(0,0,0,1)\}$

$$
:[4,2,1] \text {-code, }
$$

$$
R M\left(P^{*},\left\{x_{1}\right\}\right)=\{(0,0,0,0),(1,0,0,0)\}:[4,1,1] \text {-code },
$$

$$
R M\left(P^{*},\left\{x_{2}\right\}\right)=\{(0,0,0,0),(1,1,0,0)\}:[4,1,2] \text {-code },
$$

$$
R M\left(P^{*},\left\{x_{3}\right\}\right)=\{(0,0,0,0),(1,0,1,0)\}:[4,1,2] \text {-code },
$$

$$
R M\left(P^{*},\left\{x_{4}\right\}\right)=\{(0,0,0,0),(0,0,0,1)\}:[4,1,1] \text {-code. }
$$

References

[1] K. P. Bogart, Incidence codes of posets: Eulerian posets and Reed-Muller codes, Discrete Math., 31 (1980), 1-7.
[2] R. A. Brualdi, J. S. Graves and K. M. Lawrence, Codes with a poset metric, Discrete Math., 147 (1995), 57-72.
[3] Y. Jang and J. Park, On a MacWilliams type identity and a perfectness for a binary linear ($n, n-1, j$)-poset code, Discrete Math., 265 (2003), 85-104.

Department of Mathematics,
Inha University,
Incheon 402-751, Korea
E-mail: yanlonghe@hotmail.com

