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NONBINARY INCIDENCE CODES OF (n,n—1,5)-POSET
YAN LONGHE

ABSTRACT. Let P be a (n,n — 1, j)-poset, which is a partially or-
dered set of cardinality n with n — 1 maximal elements and j (1 <
j < n —1) minimal elements, and P* the dual poset of P. In this
paper, we obtain two types of incidence codes of nonempty proper
subset S of P and P*, respectively, by using Bogart’s method [1]
(see Theorem 3.3).

1. Introduction

Let P be a partially ordered set (or poset, for short) labelled as
{1, -+ ,x,} and ordered by a relation <. Let N be an integer > 2
and let Ay ={0,1,2,---, N — 1} denote the commutative ring of inte-
gers modulo N. (If NV is a prime number, Ay is a finite field.) Let A%,
be the set of n-tuples over Ay. The set AR, has N™ members and it is
an abelian group under addition modulo N. Also, the set A% forms a
free module over Ay with the standard basis e,, = € P, where

1 ifx=uay,

0 otherwise.

er = (ex(1), -+ ,ex(n))and e, (j) = 0(z, ;) = {

We define a code over Ay as a submodule of A%;.

In [1], Bogart introduced a method for constructing incidence codes
over a finite field from a poset. When above method is applied to the
subsets of a set, ordered by set inclusion, it yields the well known Reed-
Muller codes. Applying to a larger class of posets (Eulerian posets with
the least upper bound property), it yields majority logic decodable codes
quite analogous to Reed-Muller codes.

Recently, in [3], authors investigated binary linear (n,n — 1, j)-poset
codes was investigated (the reference [2] gave a full detail of the poset
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codes), where (n,n — 1, j)-poset is a partially ordered set of cardinality
n with n — 1 maximal elements and j (1 < j < n— 1) minimal elements.
The Hass diagram of (n,n — 1, j)-poset is given by:

Figure 1

In this paper, we obtain, respectively, nonbinary incidence codes over
Ay from (n,n — 1, j)-poset and its dual poset:
Theorem 3.3 Let P be a (n,n — 1,j)-poset and P* the dual poset of
P. For each nonempty proper subset S of P and P*, we have

[n, ]S, 1]-code it S # {x1},

RM(P,S) =
(F,5) {[n,l,n—j+1]—code if S = {z}

and

[n,|S], 1]-code if S Z Q~,

RM(P*,S) =
(F",5) {[n,|5|,2]—code ifSCQ .

2. Quick review of the incidence codes of poset over Ay

Let P, Ay and A%, be as in section 1. The incidence algebra I(P, Ay)
of P over Ay is the Ay-algebra of all functions f : Int(P) — Ay, where
Int(P) is the set of intervals [z;,z;] = {x) € P | x; < xp < z;} of P
when x; is less than or equal to x;, write f(x;,x;) for f([z;,z;]) and
multiplication (or convolution) is defined by

fo(@i,xj) = Z [ xe) (e, ).
i<z <z
It is easy to see that I(P, Ay) is an associative Ay-algebra with (two-
side) identity 6. If Z is the matrix given by
1 if ZT; < Zj,

0 otherwise,

Zij = ((xi, ;) = {
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then Z has an inverse M = (M;;) (over the integers) and the Mobius
function of P is given by M;; = pu(x;, x;), that is, the relation u¢ =9 is
equivalent to

: H X, Tj) = )
’ - ingmk<xj ,U/(I“ xk) if xr; < ;.

The fundamental theorem of Mobius inversion(denoted by MIF here-
after) is:

(MIF) If f and g are functions defined on P with values in an abelian
group, then

fl@)=> gly) < glx)=> pux,y)f(y).

y=>x y=x

For each « € P, the vectors v, = (v,(1), - ,v,(n)) defined by

form a basis for A% since, by MIF, each e, is a linear combination of
the vectors v,, i.e.,
€ = Z ,LL(CU, y)vy'
yeP: y>x
Thus, if v = Y pasVe = Y cpbues € AR, then the relation between
a, and b, is given by

(2.3) a, = Zu(z,x)bz.
z<x
For each nonempty subset S of P, let ICxn(P,S) be the submodule
of A%, spanned by the elements v, for s € S. This is an |S|-dimensional
linear nonbinary code over Ay. The codes ICN (P, S) is called the inci-
dence codes of P over Ay.

3. Nonbinary incidence codes of (n,n — 1, j)-poset over Ay

For the fixed integers j and n with 1 < 7 < n—11let P =

{z1,29,- -+ ,2,} be a (n,n — 1, j)-poset (see Figure 1). By rearranging
the elements of P we can separate P into two disjoint subposets, say @



172 Yan Longhe

and R, where without loss of generality we may assume that (see Figure

2)
(3.1)
Q ={x1, 19, -+ 21} is a (k,k — 1,1)-poset, where k =n — j + 1,
in which z; < x; for each 1 =2,3,--- | k;
R ={xp41, -+ ,x,} is an anti-chain with (n — k) elements.
Ty T3z Ty --- Tk
e o --- o
T L1 T2 -+ Tp
Figure 2

Let P* denote the dual poset of P, i.e., P* is a poset on the same set
as P, but such that x <y in P* if and only if y < x in P. Note that if
j =1, then Q = P and R = (). For convenience, put P~ = P — {11},
Q- =Q —{x1} and RT = RU{x} as set, i.e.,

(32) P=P'={n}URUQ = R"UQ (as set, disjoint union).

By (2.1) we have the Mobius function of P (resp., of P*)

1, if x =y,

-1, fr=x;andye @ in P
(33)  plzy) = H ! L
(resp., if z € Q~ and y = z; in P*),

0, otherwise.

ProproOSITION 3.1. The Mobius inversion formula on P and P* is,
respectively, given by

(3.4a)

2 — f(z) = g(x), for all z € P~ in P,
f(x) ;g(y) — {f(a:l) e

and

(3.4D)

z) = f(x) =g(z) forallxz e R" in P*,
fa)=2 o) = {f(:v) = g(x) + g(x1) forallz € Q™ in P*.

y>w
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Proof. By MIF we have
g(z) = Zu(x,y)f(y) for all x in P (resp., P*).

y>w

Thus by (3.3), g(z) = f(z) if x € P~ in P (resp., x € R" in P*). Also,
in P

g(x1) = Y p(rn,y)fy) = flo) + Y p(re,y)f(y)

= f(n) - Z f(y)
yeEQ™

= fla) = D> 9(z) = @)= D> 9y
yeEQ™ 22y yeEQ™

Thus
fla) =gl@)+ > gy) = gy).

yeQ™ yeq
Similarly, for z € Q7 in P*

g(x) = > plw,y)fy) = fle)+ > p,y)fy) = f(z) = f(2)

= fl@)= > gly) = f(x) — g(z1).
Thus f(z) = g(z1) + g(x). O

PROPOSITION 3.2. If v =73 _pa,0, =Y pbye, € A}, then
(3.5a)
Uy = €y, for allx € P~ in P (or, for all x € Rt in P*)

Vg = erQ e, InP
Uy =€, + e, forallrxe @ in P

az = by, forallz € RT in P (or, for all x € P~ in P*)
(3.50) ay =b, — by, forallz € Q~ in P
Az = byy = D peq- b in P
Proof. Since

ea(i) = 6(z,2;) = () (w, ;) = Y pla,y)C(y,z) = Y pla,y)vy (i),

T<y<x; T<y<x;
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each e, is a linear combination of the vectors v,, that is,

ey = Zu(x, y)v, for all z in P (resp., P*)

y>x
=> e, (by MIF)
y>x
Uy = €y for all x € P~ in P (resp., x € RT in P*),

— Vg = zer e, in P,
Uy =€z + e, forallze @ in P*. (by (3.4))

On the other hand, we have

> bees = b, (Z u(z, y)%) =) (Z u(z,y)bz> v

zEP zEP y>x yeP \z<y

Thus we obtain

Z%U:p = beex = Z <Z u(z,x)bz> Uy

zEP xEP xeP \z<zx
— Z (Z ,u(z,:(})bz) Uy + Z (Z M(Z7$)bz) v, (by (3.2))
xeRt \z<z zeQ~ \zZz
zeRT w6Q7
and
Z AyUy = Z bye, = Z (Z u(z,x)bz> Uy
zEP* zEP* z€P* \z<z
— Z (Z M(z,x)@) vy + Z <Z M(Z,Jf)bz) v, (by (3.2))
zeRT \z<z zeQ~ \z<z
= Z w(z, x1)bv,, + bevx + Z byvz  (by (3.3))
z<z1 zER TEQ™
= | be = D be | va + D Dot
TeQ~ zeEP~
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THEOREM 3.3. Let P be a (n,n — 1, j)-poset given by (3.1) and P*
the dual poset of P. For each nonempty proper subset S of P and P~*,
we have

[n7‘5’71]_00de lfs# {ml}v

RM(P,S) =
(F,5) {[n,l,n—j+1]-code it S ={x}

and
n,|S|,1]-code if SEZ Q~,

M(P* =
RM(P", 5) {[n,|5|,2]-code ifSCqQ .

Proof. Let S be a nonempty proper subset of P. Using (3.5a) we can
obtain incidence codes RM(P,S) = {3, cq @ty | az € An} as follows:
If S = {1}, then

(3.6) RM(P,S) = {aZex | aEAN}.

z€EQ

It is the [n,1,|Ql]-code, where |Q] = k =n —j+ 1. If x; € S, then
S=5SNP and

(3.7) RM(P,S) = { > g, | a, € AN}.

rzeSNP~

If 2y € S, then S = {z;} U (SN P~) and

(3.8) RM(P,S) = {aw1 Zem + Z Apey | Qyy,ar € AN} )

TEQ zeSNP~
From (3.7) and (3.8), if S # {z1}, then each RM(P,S) is a [n,|S], 1]-
code. Similarly, from (3.5a), for any subset S of @~ in P*,

(39)  RM(P*,S)=% > ases + Y asey|a,€ Ay
Tz€ESNQ™ rxeSNQ~

It is a [n,]S],2]-code. If S € Q7 in P*, then let ) _qa,v, = v €
RM(P*,S). Then by (3.5b) we have a, = b, for each x € SN P~ in
P*. If a, # 0 for some z € SN P~ in P*, then b, # 0 for each x. On
the other hand, if a, is zero for each z € SN P~ in P (resp., P*), then
simply remove all elements z € SN P~ in P (resp., P*) from S to get
S, note that v € RM(P,S ') (resp., RM(P*,S")). Since S' = {1} or
S " =), by repeating the argument, we complete the proof. n
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Note that RM (P, P) = RM(P*, P*) is the entire space A%, which is
the trivial perfect code.

COROLLARY 3.4. RM(P,{x.}) is a perfect code if and only if ¢ = 2,
n > 3 is odd and j = 1. In this case, RM(P,{x1}) is the binary
repetition code. Also, RM (P*,S), where S C (Q—, is not a perfect code.
Proof. RM(P,{x}) is perfect if and only if

[(n J-QH) 1]

n
¢ Y (l)(q—l)lZQ” = Z()q—l o
1=0

< q=2, j=1and n > 3 is odd number.

Similarly, RM (P* S) is perfect if and only if

qZ()q—l =¢" <= ¢"'=1 <= n=1.

Thus RM(P*, Q™) is not perfect since n > 2. ]

Example.
Let P = {1, %9, 23,74} be a (4,3,2)-poset and P* the dual of P which
are given by:

T2 T3 X1
P I/' P I\.
o [ ]
T Ty To T3 T4

Then
RM(P,P) = RM(P*, P*) = Z (it is the trivial perfect code).

~ {(1,1,1,0) (1,1,0,0) (1,0,1,0) (1,0,0,0)

M(P’{xl’“’x?’})_{ (0,0,0,0) (0,0,1,0) (0,1,0,0) (0,1,1,0)
[4,3, 1]-code,

~((1,1,1,0) (1,1,1,1) (1,0,1,0) (1,0,1,1)

M(P’{xl’“””‘*})_{ (0,0,0,0) (0,0,0,1) (0,1,0,0) (0,1,0,1)
: [4, 3, 1]-code,
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[ (1,1,1,0) (1,1,1,1) (1,1,0,0) (1,1,0,1

RM(P, {21, w3, 74}) = { (0,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1

: [4, 3, 1]-code,

~{(0,1,1,0) (0,1,1,1) (0,1,0,0) (0,1,0,1

RM(Pa {$2,$37ZE4}) - { (0’07 1’0) (0707 1’ 1) (0’0’070) (070’0’ 1

: [4, 3, 1]-code
RM(P7 {xla $2}> = {(07 07 07 0)7 (17 17 17 0)7 (17 07 17 0)7 (07 17 07 0>}

: [4,2, 1]-code,
RM(P,{xy,23}) = {(0,0,0,0),(1,1,1,0),(1,1,0,0),(0,0,1,0) }

. [4,2, 1]-code,
RM(P,{zy,x4}) = {(0,0,0,0),(1,1,1,0),(1,1,1,1),(0,0,0,1)}

. [4,2, 1]-code,
RM (P, {zs,23}) = {(0,0,0,0),(0,1,1,0),(0,1,0,0),(0,0,1,0) }

. [4,2, 1]-code,
RM (P, {xs,2,}) = {(0,0,0,0),(0,1,0,0),(0,1,0,1),(0,0,0,1)}

. [4,2, 1]-code,
RM (P, {xs,24}) = {(0,0,0,0),(0,0,1,0),(0,0,1,1),(0,0,0,1)}

. [4,2, 1]-code,
RM(P,{x}) ={(0,0,0,0),(1,1,1,0)}

. [4,1, 3]-code,

RM(P,{x2}) = {(0,0,0,0),(0,1,0,0)}
: [4, 1, 1]-code,
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RM(P,{x3}) = {(0,0,0,0),(0,0,1,0)}

. [4, 1, 1]-code,
RM(Pv {114}) - {(07070’0)7 (07070’ 1)}
: 4,1, 1]-code,
and
(0,1,0,0) (1,1,1,0) (1,0,0,0) (0,0,1,0)
RM(P’{xl’xQ’x?’})—{ (1,1,0,0) (0,1,1,0) (0,0,0,0) (1,0,1,0)
. [4, 3, 1]-code,
(0,1,0,0) (0,1,0,1) (1,0,0,0) (1,0,0,1)
RM(P’{“""C?’“})_{ (1,1,0,0) (1,1,0,1) (0,0,0,0) (0,0,0,1)
[4,3, 1]-code,
(0,0,1,0) (0,0,1,1) (1,0,0,0) (1,0,0,1)
RM(P’{““"?”“})_{ (1,0,1,0) (1,0,1,1) (0,0,0,0) (0,0,0,1)
[4, 3, 1]-code,
) ~ {(0,1,1,0) (0,1,1,1) (1,1,0,0) (1,1,0,1)
RM(P’{‘U“;?”“})—{ (1,0,1,0) (1,0,1,1) (0,0,0,0) (0,0,0,1)
[4,3, 1]-code

RM(P*,{x1,22}) = {(0,1,0,0),(1,0,0,0),(1,1,0,0),(0,0,0,0)}
. [4,2, 1]-code,

RM(P*,{x1,23}) = {(0,0,1,0),(1,0,0,0),(1,0,1,0),(0,0,0,0)}
. [4,2, 1]-code,

RM(P*, {x1,24}) = {(1,0,0,0),(1,0,0,1),(0,0,0,0),(0,0,0,1)}
: [4,2, 1]-code,

RM(P*, {xq,23}) = {(1,1,0,0),(0,1,1,0),(0,0,0,0),(1,0,1,0)}
. [4,2,2]-code,
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RM(P*, {xs,24}) = {(1,1,0,0),(1,1,0,1), (0,0,0,0), (0,0,0,1)}
. [4,2, 1]-code,

RM(P*, {x3,24}) = {(1,0,1,0),(1,0,1,1),(0,0,0,0),(0,0,0,1)}
: [4,2, 1]-code,
RM(P*,{z1}) ={(0,0,0,0),(1,0,0,0)} : [4, 1, 1]-code,

RM(P*,{xs}) = {(0,0,0,0),(1,1,0,0)} : [4, 1, 2]-code,
RM(P*,{z3}) = {(0,0,0,0),(1,0,1,0)} : [4, 1, 2]-code,

RM(P*,{x4}) ={(0,0,0,0),(0,0,0,1)} : [4, 1, 1]-code.
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