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AT LEAST FOUR SOLUTIONS TO THE NONLINEAR

ELLIPTIC SYSTEM

Tacksun Jung and Q-Heung Choi∗

Abstract. We prove the existence of multiple solutions (ξ, η) for
perturbations of the elliptic system with Dirichlet boundary condi-
tion

(0.1)
Aξ + g1(ξ + 2η) = sφ1 + h in Ω,

Aη + g2(ξ + 2η) = sφ1 + h in Ω,

where limu→∞
gj(u)

u = βj , limu→−∞
gj(u)

u = αj are finite and the
nonlinearity g1 + 2g2 crosses eigenvalues of A.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary ∂Ω. In this
paper we investigate the existence of solutions (ξ, η) for the nonlinear
elliptic system with Dirichlet boundary condition

(1.1)

Aξ + g1(ξ + 2η) = sφ1 + h in Ω,

Aη + g2(ξ + 2η) = sφ1 + h in Ω,

ξ = 0, η = 0 on ∂Ω,

where limu→∞
gj(u)

u
= βj, limu→−∞

gj(u)

u
= αj are finite and the nonlin-

earity g1 + 2g2 crosses eigenvalues of A. Here A denote the differential
operator A =

∑
1≤i,j≤n

∂
∂xi

(aij
∂

∂xj
) with aij = aji ∈ C∞(Ω̄).
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In [4] the authors investigate multiplicity of solutions of the nonlinear
elliptic equation with Dirichlet boundary condition

(1.2)
Au + g(u) = f(x) in Ω,

u = 0 on ∂Ω,

where the semilinear term g(u) = bu+ − au− and A is a second order
linear elliptic differential operator and a mapping from L2(Ω) into itself
with compact inverse, with eigenvalues −λi, each repeated according to
its multiplicity,

0 < λ1 < λ2 < λ3 ≤ · · · ≤ λi ≤ · · · → ∞.

Here the source term f is generated by the eigenfunctions of the second
order elliptic operator with Dirichlet boundary condition.

In [5, 7, 8], the authors have investigated multiplicity of solutions of
(1.2) when the forcing term f is supposed to be a multiple of the first
eigenfunction and the nonlinearity −(bu+− au−) crosses eigenvalues. In
[4], the authors investigated a relation between multiplicity of solutions
and source terms of (1.1) when the forcing term f is supposed to be
spanned two eigenfunction φ1, φ2 and the nonlinearity −(bu+ − au−)
crosses two eigenvalues λ1, λ2.

Equation (1.2) and the following type nonlinear equation with Dirich-
let boundary condition was studied by many authors:

(1.3)
Lu = b[(u + 2)+ − 2] in Ω,

u = 0 on ∂Ω.

In [9] Lazer and McKenna point out that this kind of nonlinearity
b[(u + 2)+ − 2] can furnish a model to study traveling waves in suspen-
sion bridges. So the nonlinear equation with jumping nonlinearity have
been extensively studied by many authors. For fourth elliptic equation
Tarantello [14] , Micheletti and Pistoia [12][13] proved the existence of
nontrivial solutions used degree theory and critical points theory sep-
arately. For one-dimensional case Lazer and McKenna [10] proved the
existence of nontrivial solution by the global bifurcation method. For
this jumping nonlinearity we are interest in the multiple nontrivial solu-
tions of the equation.

The organization of this paper is as following. In section 2, we have a
concern with the multiplicity of solutions and source terms of a nonlinear
elliptic equation when the nonlinearity crosses eigenvalues. We investi-
gate the uniqueness and multiplicity of solutions for the single nonlinear
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elliptic equation. In section 3, we investigate the existence of multiple
solutions (ξ, η) for the elliptic system with Dirichlet boundary condition
when the nonlinearity crosses the eigenvalues of the elliptic operator.

2. Appendix: The nonlinear elliptic equation

Let L be the linear partial differential operator. Many authors ([3,4,5,6,8])
have studied multiplicity of solutions of the following type nonlinear
problem

Lu + bu+ − au− = g in L2(Ω). (2.1)

In this section we investigate the existence of solutions for the non-
linear elliptic system with Dirichlet boundary condition

Au + f(u) = sφ1(x) + h(x). (2.2)

Here we assume that limu→∞
f(u)

u
= β, limu→−∞

f(u)
u

= α, and α < λ1 <
λ2 < β < λ3 and ‖h‖ = 1.

Let us denote an element u, in H0 ⊂ L2(Ω), as u =
∑

hjφj and we
define a subspace H of H0 as

H = {u ∈ H0 :
∑

|λj|h2
j < ∞}.

Then this is a complete normed space with a norm ‖u‖ = (
∑ |λmn|h2

mn)
1
2 .

If f ∈ H0 and a, b are not eigenvalues of L, then every solution in H0 of
Lu + bu+ − au− = f belongs to H (cf. [2]).

Let V be the two dimensional subspace of L2(Ω) spanned by {φ1, φ2}
and W be the orthogonal complement of V in L2(Ω). Let P be an
orthogonal projection L2(Ω) onto V . Then every element u ∈ H is
expressed by

u = v + w,

where v = Pu, w = (I − P )u. Hence equation (2.1) is equivalent to a
system

Lw + (I − P )(b(v + w)+ − a(v + w)−) = 0, (2.3)

Lv + P (b(v + w)+ − a(v + w)−) = s1φ1 + s2φ2. (2.4)

Lemma 2.1. For every v = c1φ1 + c2φ2, there exists a constant d > 0
such that

(Φ(v), φ1) ≥ d|c2|.
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Since the subspace V is spanned by {φ1, φ2} and φ1(x) > 0 in Ω, there
exists a cone C1 defined by

C1 = {v = c1φ1 + c2φ2 : c1 ≥ 0, |c2| ≤ kc1}
for some k > 0 so that v ≥ 0 for all v ∈ C1 and a cone C3 defined by

C3 = {v = c1φ1 + c2φ2 : c1 ≤ 0, |c2| ≤ k|c1|}
so that v ≤ 0 for all v ∈ C3.

We set the cones C2, C4 as follows

C2 = {c1φ1 + c2φ2 : c2 ≥ 0, c2 ≥ k|c1|},
C4 = {c1φ1 + c2φ2 : c2 ≤ 0, c2 ≤ −k|c1|}.

Then the union of four cones Ci (1 ≤ i ≤ 4) is the space V.
We depended very heavily on the exact form of the piecewise nonlin-

earity. In this section, we return to the study of equation for large t.
If we were content to consider the case where f ′(s) < λ3 for all s, then
the task would be fairly simple. We would show that the reduced two-
dimensional picture remained largely unchanged as c1 and c2 were made
very large. However, we regard that restriction as somewhat artificial,
restrictions on the derivative being only used previously for obtaining
upper bounds in the number of solutions.

On the other hand, if we abandon the restriction f ′ < λ3, then we
cannot just consider the two dimensional reduction any since no longer
would there be a unique solution to equation and thus no reduced prob-
lem.

Our plan is the following; we first convert the two dimensional state-
ments into degree theoretic statements in the space L2(Ω), and then
show that these can be perturbed to give the result for the nonlinear
equation with large t.

Our first lemma is a degree theoretic interpretation of Theorem.
Recall that φ1, φ2 satisfy φ1(x) − ε0|φ2(x)| ≥ 0 for all x ∈ Ω. Also

recall that if Φ : PH → PH is defined then there exists d > 0 satisfying
the conditions of Lemma.

The map Φ : PH → PH takes value φ1, once in each of the four
different regions of the plain. The next lemma gives information on the
degree of the map in these regions.

We define F : R2 → R2 by

F (s1, s2) = (t1, t2) if v = s1φ1 + s2φ2, Φ(v) = t1φ1 + t2φ2.
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Lemma 2.2. Let p = (1, 0). Let r be so large that r > 1, r(b− λ1) >
1, r(λa) > 1, rε0 > 1 and rdε0 > 1, where d and ε0 cone from section 1.
Let

D1 = {(s1, s2) | 0 < s1 < r, |s2| < ε0ε1}
D2 = {(s1, s2) | |s1| ≤ r, ε|s1| < s2 < ε0r}
D3 = {(s1, s2) | −r < s1 < 0, |s2| < ε|s1|}
D4 = {(s1, s2) | |s1| ≤ r,−ε0r < −ε0|s1|}

If deg(F,Dk, p) denotes the Brower degree of F with respect to Dk

and p for 1 ≤ k ≤ 4, then d(F, Dk, p) is defined for 1 ≤ k ≤ 4 and

deg(F, Dk, p) = (−1)k+1.

Proof. First consider D1. If (s1, s2) ∈ D and v = s1φ1 + s2φ2, then
θ(v) = 0. On D1, the map F (S1, S2) is given by F (s1, s2) = ((b −
λ1)s1, (b−λ2)s2). Since 1 < r(b−λ1) the equation F (s1, s2) = p has the
unique solution (s1, s2) = ((b − λ1)

−1, 0). Since the determinant of the
linear diagonal map is positive, we have

deg(F, D1, p) = 1.

In the case of D3, we have the diagonal map with two negative entries,
(a − λ1), (a − λ2) and the determinant is also positive neat the unique
solution in this region given by ((a−λ1)

−1, 0), so again deg(F, D3, p) = 1.
Now consider D2. The boundary of D2 consists of three line segments;
(i) a ray in the first quadrant R1.
(ii) a tay in the second quadrant R2.
(iii) a line segment L of s2 = ε0r, parallel to the s1 axis.
As we observed in the proof of Theorem , the image of R1 under F

will be a straight line segment in the fourth quadrant, the image of R2

will be to the right of the line s1 = 1, by virtue of the requirement.
Now consider the linear map u → Bu, where B is given by

B =

[
1 0
0 −1

] [
0 1
−1 0

]
.

The image of R1 under B,BR1, will be a straight line in the first
quadrant, so if 0 ≤ λ ≤ 1, we have

λBs + (1− λ)F (s) 6= p, s = (s1, s2) ∈ R1.
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The image of the ray R2 under B is in the fourth quadrant and again
we have

λBs + (1− λ)F (s) 6= p, s = (s1, s2) ∈ R2.

Finally, if s ∈ L, then s2 = ε0r > 1 so

Bs ∈ {(s1, s2) | s1 > 1}
and thus λBs + (1 − λ)F (S) 6= p for s ∈ L. By the usual homotopy
argument,

deg(F, D2, p) = deg(B, D2, p).

But we know that Bs− p has exactly one zero in D2 and the sign of the
determinant of B is −1. Thus

deg(F, D2, p) = −1.

The proof for D4 is similar so we leave it as an exercise for the reader.

Using the definition of the degree of a mapping on an arbitrary finite
dimensional space, we obtain, letting V = PH.

Lemma 2.3. If for 1 ≤ k ≤ 4,

Uk = {v ∈ V | v = s1φ1 + s2φ2, (s1, s2) ∈ Dk}
and T : V → V is defined by

Tv = PA−1(b(v + θ(v))+ − a(v + θ(v))−)

then

deg(I + T, Uk,−φ1

λ1

) = (−1)k+1.

We have now calculated the degree of the two dimensional map on the
various regions. But we remind ourselves that the two dimensional map
is obtained from the infinite dimensional map by using the contraction
fixed point theorem. Our aim now is to perturb the equation

Au + bu+ − au− = sφ1.

To do this, and arrive at the full non-linearity f equation, we could
proceed in two ways. We could restrict the class of f under discussion
so that they satisfied f ′ ≤ λ3−ε. Then each perturbed problem could be
reduced to a two dimensional problem which could be viewed, for large
s, as a perturbation of the piecewise linear problem.

The reader will soon see that this would be extremely restrictive.
What we do instead is to deduce, from our knowledge of the two dimen-
sional degree, a result on the degree of the associated map on the infinite
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dimensional space. This can then be perturbed by small perturbations,
which perturbations need only be continuous.

Let Nu = A−1(bu+ − au−).

Lemma 2.4. Let Uk, 1 ≤ k ≤ 4, and T be as in the preceding lemma.
If r2 > 0 is sufficiently large, and for 1 ≤ k ≤ 4

Yk = {u ∈ L2(Ω) | Pu ∈ Uk, ‖(I − P )u‖ < r2}.
then the Leray-Schauder degree d(I + N, Yk,−φ1

λ1
) is defined and

d(I + N, Yk,−φ1

λ1

) = d(I + T, Uk,
φ1

λ1

) = (−1)k+1.

Proof. The proof of this lemma comes in several steps. First, we
observe that there exists r1 > 0 such that if v ∈ Uk, 1 ≤ k ≤ 4, and
w = (1− s)(I−P )N(v +w), then ‖w‖ < r1. This is because, as already
observed, the map w → (1 − s)(I − P )N(v + w) is a contraction on
(I − P )H, for sone fixed k. Define h1 : Yk × [0, 1] → L2 by

h1(u, s) = (I − P )N(v + w) + PN(v + w + w(θ(v)− w)),

where v = Pu, w = (I − P )u. We obtain

u + h1(u, s) 6= −φ1

λ1

for (u, s) ∈ ∂Yk × [0, 1].

There are two possibilities to consider in u ∈ ∂Yk. One is that u = v +w
with v ∈ ∂Yk, ‖w‖ < r2, s ∈ [0, 1], and u + h1(u, s) = −φ1

λ1
. In this case,

w + (I − P )N(v + w) = 0

and

v + PN(v + w + s(θ(v)− w)) = −φ1

λ1

.

The first of these implies w = θ(v), and the second implies v + PN(v +
θ(v)) = v + N(v) = −φ1

λ1
, which contradicts the fact that v ∈ ∂Uk.

Now suppose n ∈ Uk, w ∈ (I − P )H, ‖w‖ = r2. If 0 ≤ s ≤ 1 and
u + h1(u, s) = −φ1

λ1
, then

w + (I − P )N(v + w) = 0,

So w = θ(v) and ‖w‖ ≤ r1 < r2, which is a contradiction. This shows
that u + h1(u, s) 6= φ1

λ1
for all (u, s) ∈ ∂Yk × [0, 1], and it follows by
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homotopy invariance of degree that

d(I + N, Yk,−φ1

λ1

) = d(I + h1(·, 1), Yk,−φ1

λ1

).

Now let h2 : Yk × [0, 1] → L2(Ω) be defined by

h2(u, s) = (I − s)(I − P )N(u) + PN(v + θ(v)), v = Pu.

If v ∈ ∂Uk, w ∈ (I − P )H, 0 ≤ s ≤ 1, u = v + w and u + h2(u, s) = φ1

λ1

then

v + T (v) = v + PN(v + θ(v)) = P (u + h2(u, s)) = −φ1

λ1

,

which contradicts the fact that there are no solutions if v ∈ ∂Uk. If
u = v + w, v ∈ Uk, w ∈ (I − P )H, ‖w‖ = r2, then

0 = (I − P )(u + h2(u, s)) = w + (I − s)(I − P )N(v + w),

which would imply that ‖w‖ < r2, which is a contradiction. Therefore,
u + h2(u, s) 6= φ1

λ1
, for (u, s) ∈ ∂Yk × [0, 1]. Since h1(u, 1) = h2(u, 0), we

infer by homotopy invariance that

d(I + N, Yk,−φ1

λ1

) = d(I + h2(·, 1), Yk,−φ1

λ1

).

Let B be the open ball of radius r2 in (I−P )H. If u ∈ Y k, v = Pu, w =
(I − P )u, then u + h2(u, 1) = v + PN(v + θ(v)) + w.

Thus we see that the map u → u + h2(u, 1) is uncoupled on PH ⊕
(I − P )H and is the identity on (I − P )H. Therefore by the product
property of degree,

d(I + N, Yk,−φ1

λ1

) = d(I + T, Uk,−φ1

λ1

) = (−1)K+1.

This concludes the proof of Lemma

Remark. What we have just proved can be put into an abstract
context. Assume one has an operator equation

Au + N(u) = 0

on a Hilbert space H.Assume that there exists P , commuting with L,
so that

H = PH ⊕ (I − P )H, u ∈ H, v = Pu, w = (I − P )u,
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and Lu + N(u) = 0 is equivalent to

i) Lw + (I − P )N(v + w) = 0

ii) Lv + PN(v + w) = 0.

Assume that for fixed v, i) may be solved uniquely and continuously for
w = θ(v) and that for bounded v, there exists an a priori bound for θ(v).
Then

Lemma 2.5. (The Prism Lemma) Given a bounded region U ⊆ PH
such that

v + A−1PN(v + θ(v)) = 0

has no solution on ∂U , and r > 0 so that v ∈ U, Aw+(1−s)N(v+w) =
0, 0 ≤ s ≤ 1, imply ‖w‖ < r, then if Y = {u : Pu ∈ U, ‖(I − P )u‖ ≤ r},
we have

d(w + L−1PN(v + θ(v)), U, 0) = d(u + L−1N(u), Y, 0).

Finally, having proved Lemma 3, we are in a position to produce
solutions to the semi linear problem

Au + f(u) = sφ1 + h1(x)

instead of the piecewise linear one,

Au + bu+ − au− = φ1, a < λ1, λ1 < b < λ2.

Then, as before, if f1(u) = bu+ − au−, we have

f(ζ) = f1(ζ) + f0(ζ) with lim|ζ|→∞
f0(ζ)

ζ
= 0.

We rewrite Au + f(u) = sφ1 + h1(x) as

Az = f1(z) +
f0(sz)

s
= φ1(x) +

h(x)

s
.

Let

Ns(z) = A−1(f1(z) +
f0(sz)

s
− h

s
)

and let
N(z) = A−1(f1(z)).

Then it is easy to verify that

lims→∞‖N(z)−Ns(z)‖ = 0

uniformly for z in bounded subsets of L2(Ω).
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Finally, we have everything in place to prove the main result of this
lecture.

Theorem 2.1. Assume that limu→∞
f(u)

u
= β, limu→−∞

f(u)
u

= α, and
α < λ1 < λ2 < β < λ3. Let s > 0 and ‖h‖befinite. Then there exists s0

so that s ≥ s0 implies that

Au + f(u) = sφ1(x) + h(x)

has at least four solutions.

Proof. We have established that

z + N(z) = −φ1

λ1

forall z ∈ ∂Yk, 1 ≤ k ≤ 4.

Since ∂Yk is closed and bounded, and N is continuous and compact,
there exists η > 0 such that

‖z + N(x) +
φ1

λ1

‖ ≥ η if η ∈ ∂Yk.

Now choose s0 so that

‖Ns(z)−N(z)‖ <
η

2
for z ∈ ∂Yk, 1 ≤ k ≤ 4.

Then

‖z + N(z) + (1− λ)(Ns(z)−N(z)) +
φ1

λ1

) ≥ η

2
for 0 ≤ λ ≤ 1, from which we conclude

d(I + Ns, Ys,−φ1

λ1

) = d(I + N, Yk,−φ1

λ1

) = (−1)k+1, 1 ≤ k ≤ 4.

This proved the theorem. since we have at least one solution in Yk, 1 ≤
k ≤ 4.

3. The nonlinear elliptic system

In this section we investigate the existence of solutions (ξ, η) for the
nonlinear elliptic system with Dirichlet boundary condition

(3.1)

Aξ + g1(ξ + 2η) = sφ1 + h in Ω,

Aη + g2(ξ + 2η) = sφ1 + h in Ω,

ξ = 0, η = 0 on ∂Ω,



At least four solutions to the nonlinear elliptic system 207

where limu→∞
gj(u)

u
= βj, limu→−∞

gj(u)

u
= αj are finite. Here A de-

note the differential operator A =
∑

1≤i,j≤n
∂

∂xi
(aij

∂
∂xj

) with aij = aji ∈
C∞(Ω̄).

We suppose that the nonlinearity g1 + 2g2 crosses eigenvalues of A.

Lemma 3.1. (cf. [11])Assume that limu→∞
f(u)

u
= β, limu→−∞

f(u)
u

=
α, and α < λ1 < β < λ2. Let s > 0 and ‖h‖ be finite. Then there exists
s0 so that s ≥ s0 implies that

Au + f(u) = sφ1(x) + h(x)

has at least two solutions.

Theorem 3.1. Assume that g1, g2 satisfy
(i) g1

g2
= γ 6= 0 and 2 + γ 6= 0

(ii) α1 + 2α2 < λ1 < β1 + 2β2 < λ2.
Let s > 0 and ‖h‖ be finite. Then there exists s0 so that s ≥ s0 implies
that system (3.1) has at least two solutions.

Proof. From problem (3.1) we get that Aξ−(sφ1+h) = γ(Aη−(sφ1+
h)). For any F ∈ H0 the elliptic problem

(3.2)
Lu = F in Ω,

u = 0 on ∂Ω

has a unique solution. If u1 is a solution of Au = (1− γ)(sφ1 + h), then
the solution (ξ, η) of problem (3.1) satisfies

ξ − γη = u1. (A)

On the other hand, from problem (3.1) we get the equation

(3.3)
A(ξ + 2η) + g1(ξ + 2η) + 2g2(ξ + 2η) = 3(sφ1 + h) in Ω,

ξ = 0, η = 0 on ∂Ω.

Put w = ξ + 2η. Then the above equation is equivalent to

(3.4)
Aw + g1w + 2g2w = 3sφ1 + 3h in Ω,

w = 0 on ∂Ω.

Since α1+2α2 < λ1 < β1+2β2 < λ2, by Lemma 3.1 the above equation
has at least two solutions, say w1, w2. Hence we get the solutions (ξ, η)
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of problem (3.1) from the following systems:

(3.5)
ξ − γη = u1,

ξ + 2η = w1,

(3.6)
ξ − γη = u1,

ξ + 2η = w2.

Since 2+γ 6= 0, the above systems (3.5) have unique solutions. Therefore
there exists s0 so that s ≥ s0 implies that system (3.1) has at least two
solutions.

Theorem 3.2. Assume that g1, g2 satisfy
(i) g1

g2
= γ 6= 0 and 2 + γ 6= 0

(ii) α1 + 2α2 < λ1 < λ2 < β1 + 2β2 < λ3.
Let s > 0 and ‖h‖ be finite. Then there exists s0 so that s ≥ s0 implies
that system (3.1) has at least four solutions.

Proof. ( From problem (3.1) we get that Aξ − (sφ1 + h) = γ(Aη −
(sφ1 + h)). For any F ∈ H0 the elliptic problem

(3.7)
Lu = F in Ω,

u = 0 on ∂Ω

has a unique solution. If u1 is a solution of Au = (1− γ)(sφ1 + h), then
the solution (ξ, η) of problem (3.1) satisfies

ξ − γη = u1. (A)

On the other hand, from problem (3.1) we get the equation

(3.8)
A(ξ + 2η) + g1(ξ + 2η) + 2g2(ξ + 2η) = 3(sφ1 + h) in Ω,

ξ = 0, η = 0 on ∂Ω.

Put w = ξ + 2η. Then the above equation is equivalent to

(3.9)
Aw + g1w + 2g2w = 3sφ1 + 3h in Ω,

w = 0 on ∂Ω.

Since α1 + 2α2 < λ1 < β1 + 2β2 < λ2, by Lemma 3.1 the above
equation has at least two solutions, say w1, w2, w3, w4. Hence we get
the solutions (ξ, η) of problem (3.1) from the following systems:

(3.10)
ξ − γη = u1,

ξ + 2η = w1,
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(3.11)
ξ − γη = u1,

ξ + 2η = w2,

(3.12)
ξ − γη = u1,

ξ + 2η = w3,

(3.13)
ξ − γη = u1,

ξ + 2η = w4.

Since 2+γ 6= 0, the above systems (3.5) have unique solutions. Therefore
there exists s0 so that s ≥ s0 implies that system (3.1) has at least four
solutions.
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