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MULTIPLE SOLUTIONS FOR A SUSPENDING BEAM

EQUATION AND THE GEOMETRY OF THE MAPPING

Tacksun Jung and Q-Heung Choi∗

Abstract. We investigate the multiple solutions for a suspending
beam equation with jumping nonlinearity crossing three eigenval-
ues, with Dirichlet boundary condition and periodic condition. We
show the existence of at least six nontrivial periodic solutions for the
equation by using the finite dimensional reduction method and the
geometry of the mapping.

1. Introduction

In this paper we investigate the multiplicity of the solutions of the
nonlinear suspending beam equation with Dirichlet boundary condition
and periodic condition

utt + uxxxx + bu+ − au− = f(x, t) in [−π

2
,
π

2
]×R, (1.1)

u(±π

2
, t) = uxx(±π

2
, t) = 0, (1.2)

u is π − periodic in t and even in x and t, (1.3)

where u+ = max{0, u} and u− = −min{0, u}.
Micheletti and Saccon showed in [11] that there exists δk > 0 such

that if f(x, t) = c > 0 and Λ−k − δk < −b < Λ−k , k > 1, then

utt + uxxxx + bu+ = c in [−π

2
,
π

2
]×R, (1.4)
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u(±π

2
, t) = uxx(±π

2
, t) = 0,

u is π − periodic in t and even in x and t

has at least four nontrivial solutions, where c > 0 and Λ−k is a negative
eigenvalue of eigenvalue problem

utt + uxxxx = λmnu (1.5)

with Dirichlet boundary condition (1.2) and periodic condition (1.3).
They proved this result by the abstract result of the critical point theory.

In this paper we assume that

f(x, t) = sφ00.

That is, we investigate the multiplicity of the solutions of the equation

utt + uxxxx + bu+ − au− = sφ00 in [−π

2
,
π

2
]×R, (1.6)

u(±π

2
, t) = uxx(±π

2
, t) = 0,

u is π − periodic in t and even in x and t,

where φ00 is the eigenfunction corresponding to the eigenvalue λ00 = 1
of the ei genvalue problem (1.5) with (1.2) and (1.3).

The purpose of this paper is to find the number of the weak solutions
of (1.6).

Choi and Jung proved in [2] that for 3 < b < 15, there exist cones R1,
R′

2, R3, R′
4 such that (i) if sφ00 ∈ IntR1, then (1.4) with f(x, t) = sφ00

has a positive solution and at least two sign-changing solutions, (ii) if
sφ00 ∈ ∂R1, then (1.4) with f(x, t) = sφ00 has a positive solution and
at least one sign-changing solution, (iii) if sφ00 ∈ IntR′

i (i = 2, 4), then
(1.4) with f(x, t) = sφ00 has at least one sign-changing solution, (iv)
if sφ00 ∈ IntR3. then (1.4) with f(x, t) = sφ00 has only the negative
solution, (v) if sφ00 ∈ ∂R3, then (1.4) with f(x, t) = sφ00 has a negative
solution. The authors obtain these results by the critical point theory
and the finite dimensional reduction method.

The eigenvalue problem (1.5) with (1.2) and (1.3) has infinitely many
eigenvalues

λmn = (2n + 1)4 − 4m2 (m,n = 0, 1, 2, . . .) (1.7)

and corresponding normalized eigenfunctions φmn (m,n ≥ 0) given by

φ0n =

√
2

π
cos(2n + 1)x for n ≥ 0, (1.8)
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φmn =
2

π
cos 2mt cos(2n + 1)x for m > 0, n ≥ 0. (1.9)

The main results are the following:

Theorem 1.1. Assume that −17 = λ41 < a < −1 = −λ00 < 3 =
λ10 < 15 = −λ20 < b < −λ30 = 35 and s > 0. Then (1.6) with (1.2) and
(1.3) has at least six nontrivial periodic solutions.

Generally we have:

Theorem 1.2. Assume that −17 = λ41 < a < −1 = λ00 < −λk 0 <
b < −λk+1 0, k > 1, then (1.6) with (1.2) and (1.3) has at least six
nontrivial solutions.

For the proof of Theorem 1.1 we use the finite dimensional reduction
method and the geometry of the mapping defined on the finite dimen-
sional subspace spanned by eigenfunction φ00, φ10, φ20. In section 2 we
introduce the Hilbert space defined by the eigenfunction expansion on
the restricted region [−π

2
, π

2
]× [−π

2
, π

2
] and some properties of the opera-

tor L, Lu = utt +uxxxx. In section 3 we prove Theorem 1.1 and Theorem
1.2 by using the finite dimensional reduction method and the geometry
of the mapping defined on the finite dimensional subspace.

2. Some results on the operator L, LU = Utt + Uxxxx

Let Q be the square [−π
2
, π

2
]×[−π

2
, π

2
] and H0 the Hilbert space defined

by
H0 = {u ∈ L2(Q)| u is even in x and t}. (2.1)

The set of functions {φmn} is an orthonormal base in H0. We define a
subspace H of H0 as follows

H = {u ∈ H0| u =
∑

hmnφmn,
∑

|λmn|h2
mn < ∞} (2.2)

with a norm
‖u‖ = [

∑
|λmn|h2

mn]
1
2 . (2.3)

Then this normed space H is complete.
We have a proposition which is proved in [5].

Proposition 2.1. (i) utt + uxxxx ∈ H implies u ∈ H.
(ii) ‖u‖ ≥ ‖u‖L2 , where ‖u‖L2 denotes the L2 norm of u.
(iii) ‖u‖ = 0 iff ‖u‖L2 = 0.
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Proposition 2.2. Let w(x, t) ∈ H0. Let a and b be not eigenvalues
of (1.4) with (1.2) and (1.3). Then all solution in H0 of

utt + uxxxx + bu+ − au− = w(x, t) in H0 (2.4)

belong to H.

The proof of Proposition 2.2 can be proved by the same method as
that of Lemma 1.2 in [5] which is the case that utt+uxxxx+δu+ = w(x, t),
δ is not an eigenvalue of L.

With the aid of Proposition 2.2 it is enough to investigate the exis-
tence of solutions of (1.6) in the subspace H of L2(Q), namely

utt + uxxxx + bu+ − au− = sφ00 in H, (2.4)

3. Proof of Theorem 1.1 and Theorem 1.2

Let L be the operator,

Lu = utt + uxxxx.

Assume that −17 = λ41 < a < −1 = −λ00 < 3 = λ10 < 15 = −λ20 <
b < −λ30 = 35 and s > 0. We shall use the contraction mapping theorem
to reduce the problem from an infinite dimensional one in L2(Q) to a
finite dimensional one.

Let V be the three dimensional subspace of H spanned by φ00, φ10

and φ20 and W the orthogonal complement of V in H. Let P be an
orthogonal projection from H onto V and I − P the one from H onto
W . Then for all u ∈ H, u = v + w, where v = Pu, w = (I − P )u.
Therefore (2.4) is equivalent to
(i) w = L−1(I − P )(−b(v + w)+ + a(v + w)−),
(ii) Lv = P (−b(v + w)+ + a(v + w)− + sφ00). (3.1)
Let us show that for fixed v, (3.1(i)) has a unique solution w = θ(v) and
that θ(v) is Lipschitz continuous in terms of v. Let α = 1

2
(λ30 + λ41) =

−35+17
2

= −9 (3.1.(i)) can be rewritten as

w = (L− α)−1(I − P )gv(w) (3.2)

where
gv(w) = −b(v + w)+ + a(v + w)− − α(v + w).

Since

|gv(w1)− gv(w2)| ≤ max{| − b− α|, |a + α|}|w2 − w1|,
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‖gv(w1)− gv(w2)‖ ≤ max{| − b− α|, |a + α|}‖w2 − w1‖ < 26‖w2 − w1‖,
where ‖ · ‖ is the norm in H. Since the operator (L − α)−1(I − P ) is
a self-adjoint, compact linear map from (I − P )H onto itself, it follows
that

‖(L− α)−1(I − P )‖ ≤ 1

26
.

Therefore, for fixed v ∈ V , the right hand side of (3.2) defines a Lips-
chitz mapping from (I − P )H into itself with Lipschitz constant γ < 1.
Therefore by the contraction mapping principle, for given v ∈ V , there
exists a unique w = θ(v) ∈ W which satisfies (3.2). It follows that, by
the standard argument principle, θ(v) is Lipschitz continuous in terms
of v.

Thus equation (2.4) can be reduced to the equivalent equation

vtt + vxxxx = P (−b(v + θ(v))+ + a(v + θ(v))− + sφ1) (3.3)

defined on the three dimensional subspace V spanned by {φ00, φ10, φ20}.
Let

C1 = {v = c0φ00 + c1φ10 + c2φ20 ≥ 0| c0 ≥ 0, |c1| ≤ ε1c0 and

|c2| ≤ ε2c0 for some ε1 > 0, ε2 > 0 such that v ≥ 0},
C2 = {v = c0φ00 + c1φ10 + c2φ20 ≤ 0| c0 ≤ 0, |c1| ≤ ε1|c0|and

|c2| ≤ ε2|c0| for some ε1 > 0, ε2 > 0 such that v ≤ 0},
We note that if v ≥ 0 or v ≤ 0, then θ(v) = 0. If v ≥ 0 (v ≤ 0)
and θ(v) = 0 in (3.1(i)), equation (3.1(i)) is satisfied. We note that
w = θ(v) = 0 for v ∈ C1 ∪ C2, but we do not know θ(v) for all v ∈ V .
We consider the map

v 7→ G(v) = vtt + vxxxx + P (b(v + θ(v))+ − a(v + θ(v))−).

We will consider the images of C1, C2 and the complements of C1 ∪ C2

under the map G. First we consider the image of the cone C1. If v =
c0φ00 + c1φ10 + c2φ20 ∈ C1, then we have

G(v) = c0φ00 − 3c1φ10 − 15c2φ20 + b(c0φ00 + c1φ10 + c2φ20)

= (b + 1)c0φ00 + (b− 3)c1φ10 + (b− 15)c2φ20.

Thus the images of the ray c0φ00 ± ε1c0φ10 ± ε2c0φ20 are

= (b + 1)c0φ00 ± (b− 3)ε1c0φ10 ± (b− 15)ε2c0φ20

or the rays

d0φ00 ± ε1(
b− 3

b + 1
)d0φ10 ± ε2

b− 15

b + 1
d0φ20.
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Thus G maps C1 into the region

D1 = {d0φ00+d1φ10+d2φ20|d0 ≥ 0, |d1| ≤ ε1(
b− 3

b + 1
)d0, |d2| ≤ ε2

b− 15

b + 1
d0}.

Similarly we consider the image of C2 by the map G. If c0 ≤ 0,

G(c0φ00 ± ε1c0φ10 ± ε2c0φ20)

= (a + 1)c0φ00 ± (a− 3)c0ε1φ10 ± (a− 15)c0ε2φ20.

Since (b + 1)c0 > 0 for c0 > 0 and (a + 1)c0 > 0 for c0 < 0, G(v) = sφ00

(s > 0) has a positive solution sφ00

b+1
in C1 and a negative solution sφ00

a+1
in

C2.
Now we shall find the other solutions in the complements of C1 ∪ C2

of the map G(v) = sφ00, for s > 0. We have the following lemma:

Lemma 3.1. There exist p1 > 0 and p2 > 0 such that
(i) (G(c0φ00 + c1φ10 + c2φ20), φ00) ≥ p1|c1| and
(ii) G(c0φ00 + c1φ10 + c2φ20), φ00) ≥ p2|c2|.

Proof. (i) G(c0φ00 + c1φ10 + c2φ20) = L(c0φ00 + c1φ10 + c2φ20) +
P (b(c0φ00 + c1φ10 + c2φ20 + θ(c0φ00 + c1φ10 + c2φ20))

+−a(c0φ00 + c1φ10 +
c2φ20+θ(c0φ00+c1φ10+c2φ20))

−). If u = c0φ00+c1φ10+c2φ20)+θ(c0φ00+
c1φ10 + c2φ20), then

(G(c0φ00 + c1φ10 + c2φ20), φ00) = ((L− λ00)(c0φ00 + c1φ10 + c2φ20), φ00)

+P (bu+ − au− + λ00u, φ00).

Since (L− λ00)φ00 = 0 and L is self adjoint, ((L− λ00)(c0φ00 + c1φ10 +
c2φ20), φ00) = 0. Moreover bu+ − au− + λ00u = (b + 1)u+ − (a + 1)u− ≥
τ |u|, where τ = min{b+1,−a− 1} > 0. Thus (bu+− au−+λ00u, φ00) ≥
τ

∫ |u|φ00. Then there exists p1 > 0 such that τφ00 ≥ p1|φ10|, so that

τ

∫
|u|φ00 ≥ p1

∫
|u||φ10| ≥ p1|

∫
uφ10| = p1|(u, φ10)| = p1|c1|.

(ii) We also note that there exists p2 > 0 such that τφ00 ≥ p2|φ20|, so
that

τ

∫
|u|φ00 ≥ p2

∫
|u||φ20| ≥ p2|

∫
uφ20| = p2|(u, φ20)| = p2|c2|.
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Now we are looking for the preimages of G(v) = sφ00, for s > 0,
in the complement of C1 ∪ C2. Let us consider the image under G of
c0φ00 + c1φ10 + c2φ20 with c1 ≥ ε1|c0|, c2 ≥ ε2|c0|, c1 = k for some
k > 0. By Lemma 3.1, the image G(L) of c1 = k, |c0| ≤ 1

ε1
k and

c2 ≥ ε2|c0| must lie to the right of the line c0 = p1k and must cross
the positive φ00 axis in the image space. Thus we have shown that if
u = c0φ00 +kφ10 + c2φ20 + θ(c0φ00 +kφ10 + c2φ20), k > 0, |c0| ≤ k

ε1
. Then

u satisfies, for some c0, utt +uxxxx +bu+−au− = s1φ00 for some s1 > p1k
and k > 0. Letting ũ = s

s1
u, we see that ũ satisfies

(ũ)tt + (ũ)xxxx + bũ+ − aũ− = sφ00.

Similarly we can show the existence of another solution ǔ satisfying

(ǔ)tt + (ǔ)xxxx + bǔ+ − aǔ− = sφ00

with (ǔ, φ00) < 0.

Now we consider the image under G of c0φ00 + c1φ10 + c2φ20 with c1 ≥
ε1|c0|, c2 ≥ ε2|c0|, and c2 = l for some l > 0. By Lemma 3.1, the image
G(M) of c2 = l, |c0| ≤ 1

ε2
l must lie to the right of the line c0 = p2l and

must cross the positive φ00 axis in the image space. Thus we have shown
that if u = c0φ00 +c1φ10 + lφ20 +θ(c0φ00 +c1φ10 + lφ20), l > 0, c1 ≥ ε1|c0|,
l ≥ ε2|c0|, then u satisfies, for some c0, utt + uxxxx + bu+ − au− = s2φ00

for some s2 > p2l and l > 0. Letting ˜̃u = s
s2

u, we see that ˜̃u satisfies

(˜̃u)tt + (˜̃u)xxxx + b˜̃u
+ − a˜̃u

−
= sφ00.

Similarly we can show the existence of another solution ˇ̌u satisfying

(ˇ̌u)tt + (ˇ̌u)xxxx + bˇ̌u
+ − aˇ̌u

−
= sφ00

with (ˇ̌u, φ00) < 0.

Thus G(v) = sφ00, s > 0 has six solutions, one in each of the six
regions. The six solutions are a positive solution sφ00

b+1
in C1, a negative

solution sφ00

a+1
in C2, ũ, ǔ, ˜̃u, and ˇ̌u, which we state in above. We prove

Theorem 1.1. For the proof of Theorem 1.2 we set V the k+1 dimensional
subspace of H spanned by φ00, φ10 and φk 0 and W the orthogonal
complement of V in H. The other parts of the proof of Theorem 1.2 are
the similar process to those of the proof of Theorem 1.1.
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