Effects of Yanghyuljanggeungunbo-tang(Yangxuezhuangjinjianbu-tang) and Cervi Cornu Parvum Pharmaco-Acupuncture on the Motor Function Recovery and Nerve Regeneration in Rats Induced Spinal Cord Injury

양혈장근건보탕(養血壯筋健步湯)과 녹용약침(鹿茸藥鍼)이 척수손상 유발 흰쥐의 운동기능 회복 및 신경재생에 미치는 영향

  • Park, Ji-Yong (Dept. of Oriental Rehabilitation Medicine, College of Oriental Medicine, Dong-Shin University) ;
  • Sul, Jae-Uk (Dept. of Oriental Rehabilitation Medicine, College of Oriental Medicine, Dong-Shin University) ;
  • Kim, Sun-Jong (Dept. of Oriental Rehabilitation Medicine, College of Oriental Medicine, Dong-Shin University) ;
  • Choi, Jin-Bong (Dept. of Oriental Rehabilitation Medicine, College of Oriental Medicine, Dong-Shin University) ;
  • Shin, Mi-Suk (Dept. of Oriental Rehabilitation Medicine, School of Oriental Medicine, Pu-San National University)
  • 박지용 (동신대학교 한의과대학 한방재활의학교실) ;
  • 설재욱 (동신대학교 한의과대학 한방재활의학교실) ;
  • 김선종 (동신대학교 한의과대학 한방재활의학교실) ;
  • 최진봉 (동신대학교 한의과대학 한방재활의학교실) ;
  • 신미숙 (부산대학교 한의학전문대학원)
  • Received : 2009.02.19
  • Accepted : 2009.04.08
  • Published : 2009.04.30

Abstract

Objectives : The purpose of this study was to investigate the effects of Yanghyuljanggeungunbo-tang(Yangxuezhuangjinjianbu-tang) and Cervi Cornu Parvum pharmaco-acupuncture in Spinal Cord Injury(SCI)-induced rats. Methods : The subjects were divided into 5 groups ; Normal, Control no treatment after SCI, Experimental I taken with Yanghyuljanggeungunbo-tang (Yangxuezhuangjinjianbu-tang) 500 mg/kg $0.5m{\ell}$ daily after inducing SCI. Experimental II taken with Cervi Cornu Parvum pharmaco-acupuncture at Taegye(KI3) and $Yangnungch{\acute{o}}n$(GB34) after inducing SCI and Experimental III taken with Yanghyuljanggeungunbo-tang(Yangxuezhuangjinjianbu-tang) 500 mg/kg $0.5m{\ell}$ and Cervi Cornu Parvum pharmaco-acupuncture at KI3 and GB34 to SCI-induced rats. After each operation, the present author observed the motor behavior recovery and nerve regeneration by analysis of the motor behavior tests, EMG, hematological(AST, ALT, WBC), histological and immunological changes. Rats were tested at modified Tarlov test at the 1st, 2nd, 3rd, 4th day, and Motor behavior test at 1st, 3rd, 7th, 14th, 21st day. Results : Results are as follows. 1. All the experimental groups were improved compared with control group in the motor behavior tests including Tarlov test, Basso-Beattle-Bresnahan locomotor rating scale, modified inclined plane test, open field test, grid walk test and narrow beam test. Especially Experimental III was improved significantly among other groups. 2. In EMG test, H wave appeared weak only in Experimental III. And M wave was increased significantly in Experimental III. 3. All the experimental groups were significantly decreased compared with control group in serum AST, serum ALT and serum WBC tests. 4. significantly decreased in Tumor Necrosis Factor-${\alpha}$ test compared with the first day of SCI. 5. Muscle contraction and denaturation of all the experimental groups were inhibited in histological observations of gastrocnemius muscle. Especially, those of experimental III was more effective. 6. NGF and BDNF of spinal cord gray matter in all the experimental groups were increased compared with control group. Especially, those of experimental III was more effective. Conclusions : As above, it can be suggested that Yanghyuljanggeungunbo-tang(Yangxuezhuangjinjianbu-tang) and Cervi Cornu Parvum pharmaco-acupuncture may improve motor behavior, EMG, hematological, histological and immunological findings in Spinal Cord Injury(SCI)-induced rats. Especially, effects will be somewhat better in combination of these two treatments.

Keywords

References

  1. 許浚. 東醫寶鑑. 경남:동의보감출판사. 2005:796.
  2. 최용태 외. 침구학(하). 서울:집문당. 2006:1457.
  3. 정지천. 혈허/재관류 뇌 조직에서 녹용 약침액의 항산화 작용에 대한 연구. 대한한방내과학회. 대한한방내과학회지. 1999;20(1):167-80.
  4. 김무진, 이승덕, 김경호, 김갑성. 연골세포에서 녹용약침의 효과. 대한침구학회. 대한침구학회지. 2004;21(2):73-88.
  5. 박은주, 신정철, 나건호, 이동현, 한상균, 윤여충, 채우석, 조명래. 鹿茸藥鍼의 퇴행성 슬관절염에 대한 임상적 연구. 대한침구학회. 대한침구학회지. 2004;21(2):275-86.
  6. 한방재활의학과학회. 한방재활의학. 서울:군자출판사. 2006:135.
  7. 김정호. 교통사고로 인한 경추부 손상으로 내원한 환자 1례에 대한 증례보고. 대한침구학회. 대한침구학회지. 2003;20(6):201-9.
  8. 설재욱, 신미숙, 최진봉. 전침요법을 병용한 척추손상 환자의 치험 1례. 한방재활의학과학회. 한방재활의학과학회지. 2004;14(4):117-27.
  9. 나창수. 경혈학각론. 서울:정문각. 2004:207-8, 295.
  10. 대한정형외과학회. 정형외과학. 서울:최신의학사. 2004:675-8.
  11. DeLisa JA. Developing an integrative approach to spinal cord medicine. J Spinal Cord Med. 2003;26(1):27. https://doi.org/10.1080/10790268.2003.11753656
  12. Zhou LY, Li J, Li CM, Yu ZG, Zhang WL, Zheng M, Meng QG, Wang FY, Sheng ZG. Observation on experimental effect of electroacupuncture at points Baliao and Huiyang(BL35) on retention of urine induced by spinal cord injury. Zhongguo Zhen Jiu. 2006;26(4):237-9.
  13. Yang C, Li B, Liu TS, Zhao DM, Hu FA. Effect of electroacupuncture on proliferation of astrocytes after spinal cord injury. Zhongguo Zhen Jiu. 2005;25(8):569-72.
  14. 이건목, 김경식, 이강창. 附子의 經口投與가 RAT의 脊髓損傷에 미치는 영향 및 비교. 대한침구학회. 대한침구학회지. 1998;15(2):105-16.
  15. 이건목, 황우준, 김경식, 천미나, 김종환. 持續的인 鍼刺戟이 RAT의 척수 손상에 미치는 영향. 대한침구학회. 대한침구학회지. 1997;14(1):273-86.
  16. Paola FA, Arnold M. Acupuncture and spinal cord medicine. J Spinal Cord Med. 2003;26(1):12-20. https://doi.org/10.1080/10790268.2003.11753654
  17. 이건목, 황우준, 조기용, 김기영. 附子 藥鍼이 RAT의 脊髓損傷에 미치는 영향 및 비교. 대한침구학회. 대한침구학회지. 1999;16(1):283-96.
  18. Han QM, Xie J, Chai ST, Fang J, Liu Q. Effect of Governer Meridian electro-acupuncture on water channel aquaporin-4 in experimental spinal cord injured rats. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2005;25(7):637-9.
  19. 손성철, 황민섭, 윤종화, 김갑성. 脊髓血管畸形에 의한 脊髓損傷患者 1例에 대한 증례보고. 대한침구학회. 대한침구학회지. 2002;19(5):247-57.
  20. 李長卿, 范文學 主編. 中國獸醫鍼灸圖譜. 甘肅科學技術出版社. 1990:236.
  21. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12(1):1-21. https://doi.org/10.1089/neu.1995.12.1
  22. Behrmann DL, Bresnahan JC, Beattie MS, Shah BR. Spinal cord injury produced by consistent mechanical displacement of the cord in rats: behavioral and histologic analysis. J Neurotrauma. 1992;9(3):197-217. https://doi.org/10.1089/neu.1992.9.197
  23. Rivlin AS, Tator CH. Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg. 1977;47(4):577-81. https://doi.org/10.3171/jns.1977.47.4.0577
  24. Karim A, Arslan MI. Isolation modifies the behavioral response in rats. Bangladesh Med Res Counc Bull. 2000;26(1):27-32.
  25. Matter L, Germann D. Detection of human immunodeficiency virus(HIV) type 1 antibodies by new automated microparticle enzyme immunoassay for HIV types 1 and 2. J Clin Microbiol. 1995;33(9):2338-41.
  26. Kenneth W. Lindsay, Ian Bone. 임상신경학. 서울:Epublic. 2006:582-3.
  27. Meinecke FW. Limits of recovery in paraplegics. Article in German. Hefte Unfallheilkd. 1966;87:180-7.
  28. Bosch A, Stauffer ES, Nickel VL. Incomplete traumatic quadriplegia. A ten-yearreview. JAMA. 1971;216(3):473-8. https://doi.org/10.1001/jama.216.3.473
  29. Fowler S, Newton L. Complementary and alternative therapies: the nurse's role. J Neurosci Nurs. 2006;38(4):261-4. https://doi.org/10.1097/01376517-200608000-00009
  30. Cardenas DD, Jensen MP. Treatments for chronic pain in persons with spinal cord injury: A survey study. J Spinal Cord Med. 2006;29(2):109-17. https://doi.org/10.1080/10790268.2006.11753864
  31. Norrbrink Budh C, Lundeberg T. Nonpharmacological pain-relieving therapies in individuals with spinal cord injury: a patient perspective. Complement Ther Med. 2004;12(4):189-97. https://doi.org/10.1016/j.ctim.2004.10.003
  32. Wen HL. Acute central cervical spinal cord syndrome treated by acupuncture and electrical stimulation(AES). Comp Med East West. 1978;6(2):131-5. https://doi.org/10.1142/S0147291778000204
  33. 全國韓醫科大學 本草學敎室. 本草學. 서울:永林社. 2004:161, 165, 223, 334, 469, 575, 581, 605, 620, 632, 657, 662.
  34. Van de Meent H, Hamers FPT, Lankhorst AJ. New assessment techniques for evaluation of post-traumatic spinal cord function in the rat. J Neurotrauma. 1996;13:741-54. https://doi.org/10.1089/neu.1996.13.741
  35. Tarlov IM. Spinal cord compression studies. III. Time limits for recovery after gradual compression in dogs. AMA Arch Neurol Psychiatry. 1954;71(5):588-97. https://doi.org/10.1001/archneurpsyc.1954.02320410050004
  36. Wrathall JR, Petergrew RK, Harvey F. Spinal cord contusion in the rat. Exp Neurol. 1988;88:108-22. https://doi.org/10.1016/0014-4886(85)90117-7
  37. Aiello I, Rosati G, Serra G, et al. The diagnostic value of H-index in S1 root compression. J Neurol Neurosurg psychiat. 1981;44:171-2. https://doi.org/10.1136/jnnp.44.2.171
  38. Burke D, Adams RW, Skuse NF. The effect of voluntary contraction on the H-reflex of human limb muscle. Brain. 1989;112:417-33. https://doi.org/10.1093/brain/112.2.417
  39. Tarkka IM, Larson TA. Change of electrically elicited reflexes in hand and hand forearm muscle in man. Am J Phys Med Rehabil. 1987;66:308-11. https://doi.org/10.1097/00002060-198710000-00010
  40. Thompson FJ, Reier PJ, Lucas CC. Altered patterns of reflex excitability subsequent to contusion injury of the rat spinal cord. J negro. 1992;68:1473-86.
  41. Stephen MH, Phil MEW. Effect of different anesthetics on the paired-pulse depression of the H reflex in adult rat. Exp. Neuro. 2002;1777:494-502.
  42. 황종업, 이근배. 발육계조직 Glutamic-Oxaloacetic 및 Glutamic-Pyruvic Transaminase에 관한 연구. 우석의대잡지. 1969;6(1):1-40.
  43. 김태전, 김승곤. The Study on the Occurrence Rate of HBs Antigen in Patients with Pulmonary Tuberculosis, and the Comparison of GOT, GPT Levels between HBs Antigen positive and Negative Patients. 서울보건전문대학 논문집. 1981;1(1):33-8.
  44. 대한병리학회. 병리학. 서울:고문사. 1998:71-103, 1093-5, 1165-6, 1994.
  45. Travlos A, Anton HA and Wing PC. Cerebrospinal fluid cell count following spinal cord injury. Arch Phys, Med. Rehabil. 1994;75:293-6. https://doi.org/10.1016/0003-9993(94)90032-9
  46. Schnell L, Fearn S, Schwab ME, et al. Cytokine-induced acute inflammation in the brain and spinal cord. J Neuropathol Exp Neurol. 1999;58:245-54. https://doi.org/10.1097/00005072-199903000-00004
  47. Klusman I, Schwan ME. Effects of proinflammatory cytokines in experimental spinal cord injury. Brain Res. 1997;762:173-84. https://doi.org/10.1016/S0006-8993(97)00381-8
  48. Merrill JE, Benveniste EN. Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci. 1996;19:331-8. https://doi.org/10.1016/0166-2236(96)10047-3
  49. Knoblach SM, Fan L, Faden AI. Early neuronal expression of tumor necrosis factor-alpha after experimental brain injury contributes to neurological impairment. J Neuroimmunol. 1999;95:115-25. https://doi.org/10.1016/S0165-5728(98)00273-2
  50. Schwartz M, Solomon A, Lavie V. Tumor necrosis factor facilitates regeneration of injured central nervous system axons. Brain Res. 1991;545:334-8. https://doi.org/10.1016/0006-8993(91)91309-O
  51. Yoshida K, Gage FH. Cooperative regulation of nerve growth factor synthesis and secretion in fibroblasts and astrocytes by fibroblast growth factor and other cytokines. Brain Res. 1992;569:14-25. https://doi.org/10.1016/0006-8993(92)90364-F
  52. Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nature Med. 1997;3:73-6. https://doi.org/10.1038/nm0197-73
  53. Allen AR. Remarks on histological changes in spinal cord due to impact: an experimental study. J Ner Ment Dis. 1914;41:141-7. https://doi.org/10.1097/00005053-191403000-00002
  54. Ducker TB, Kindt GW, and Kempe LG. Pathological findings in acute experimental spinal cord trauma. J Neurosurg. 1971;35:700-8. https://doi.org/10.3171/jns.1971.35.6.0700
  55. Nemecek S. Morphological evidence of microcirculatory disturbances in experimental spinal cord trauma. Adv, Neurol. 1978;20:395-405.
  56. Firkins SS, Bates CA, Stelzner DJ. Corticospinal tract plasticity and astroglial reactivity after cervical spinal injury in the postnatal rat. Exp Neurol. 1993;120:1-15. https://doi.org/10.1006/exnr.1993.1036
  57. Cao X, Tang C, Luo Y. Effect of nerve growth factor on neuronal apoptosis after spinal cord injury in rats. Chin J Traumatol. 2002;5(3):131-5.
  58. Marty S, Berzaghi MdaP, Berninger B. Neurotrophins and activity-dependent plasticity of cortical interneurons. Trends Neurosci. 1997;20(5):198-202. https://doi.org/10.1016/S0166-2236(96)01026-0
  59. Zhang L, Schmidt RE, Yan Q, Snider WD. NGF and NT-3 have differing effects on the growth of dorsal root axons in developing mammalian spinal cord. J Neurol Sci. 1994;14:5187-201.
  60. Michael GJ, Averill S, Nitkunan A, Rattray M, Bennett DL, Yan Q, et al. Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in Trk A-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J Neurol Sci. 1997;17:8470-6.
  61. Sendtner M, Dittrich F, Hughes RA, Thoenen H. Actions of CNTF and neurotrophins on degenerating motor neurons: preclinical studies and clinical implications. J Neurol Sci. 1994;124:77-83.
  62. Hicks RR, Numan S, Dhillon HS, Prasad MR, Seroogy KB. Alterations in BDNF and NT-3 mRNAs in rat hippocampus after experimental brain trauma. Brain Res Mol Brain Res. 1997;48(2):401-6. https://doi.org/10.1016/S0169-328X(97)00158-7
  63. Uchida K, Baba H, Maezawa Y, Furukawa S, Omiya M, Kokubo Y, Kubota C, Nakajima H. Increased expression of neurotrophins and their receptors in the mechanically compressed spinal cord of the spinal hyperostotic mouse (twy/twy). Acta Neuropathol (Berl). 2003;106(1):29-36.