Effects of Treadmill Exercise on Alpha-synuclein Mutation and Activated Neurotrophins in Nigrostriatal Region of MPTP-induced Parkinson Models

MPTP 파킨슨 모델의 트레드밀 운동이 알파시누크린 변성과 흑질선조체내 신경성장인자 활성화에 미치는 영향

  • Park, Jae-Sung (Dept. of Physical Education, College of Education, Korea University) ;
  • Kim, Jeong-Hwan (Dept. of Oriental Rehabilitation Medicine, College of Oriental Medicine, Woo-Suk University) ;
  • Yoon, Sung-Jin (Dept. of Physical Education, College of Education, Korea University)
  • 박재성 (고려대학교 사범대학 체육교육과) ;
  • 김정환 (우석대학교 한의과대학 한방재활의학과교실) ;
  • 윤성진 (고려대학교 사범대학 체육교육과)
  • Received : 2009.03.26
  • Accepted : 2009.04.09
  • Published : 2009.04.30

Abstract

Objectives : Neuronal changes that result from treadmill exercise for patients with Parkinson's disease(PD) have not been well documented, although some clinical and laboratory reports suggest that regular exercise may produce a neuroprotective effect and restore dopaminergic and motor functions. However, it is not clear if the improvements are due to neuronal alterations within the affected nigrostriatal region or result from a more general effect of exercise on affect areas and motivation. In this study, we demonstrate that motorized treadmill exercise improves the neuronal outcomes in rodent models of PD. Methods : We used a chronic mouse model of parkinsonism, which was induced by injecting male C57BL/6 mice with 10 doses(Every 12 hour) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (30 mg/kg) and probenecid (20 mg/kg) over 5 days. These mice were able to sustain an exercise training program on a motorized rodent treadmill at a speed of 18 m/min, $0^{\circ}$ of inclination, 40 min/day, 5 days/week for 4 weeks. At the end of exercise training, we extracted the brain and compared their neuronal and neurochemical changes with the control(saline and sedentary) mice groups. Synphilin protein is the substance that manifestly reacts with ${\alpha}$-synuclein. In this study, we used Synphilin as a manifest sign of recovery from neurodegeneration. We analyze the brain stems of the substantia nigra and striatum region using the western blotting technique. Results : There were no expression of synphilin in the saline-induced groups. The addition of MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) greatly accelerated synphilin expression which meant an aggregation of ${\alpha}$-synuclein. But, the MPTP-induced treadmill exercise group showed significantly lower expression than the MPTP-induced sedentary group. This means treadmill exercise has a definite effect on the decrease of ${\alpha}$-synuclein aggregation. Conclusions : In this study, our results suggest that treadmill exercise promoted the removal of the aggregation of ${\alpha}$-synuclein, resulting in protection against disease development and blocks the apoptotic process in the chronic parkinsonian mice brain with severe neurodegeneration.

목 적 : 규칙적인 운동이 신경보호 효과와 도파민성 신경원의 재구축, 운동기능 향상에 영향을 미친다는 실험실적 연구결과에도 불구하고, 아직까지 파킨슨병 질환자의 트레드밀 운동이 뇌신경 변화에 영향을 미치는지에 대해서는 논란이 되고 있는 상황이다. 더군다나, 증상의 진전이 흑질선조체의 뇌신경 변화에 의한 것인지, 운동에 의한 전반적인 효과인지, 의욕에 영향을 받은 것이지 또한 확실치 않은 상황이다. 이에 본 연구자는 트레드밀 운동이 파킨슨 유발 실험쥐의 뇌신경 변화를 유발하는 것을 밝히고자 본 실험을 수행하였다. 방 법 : 본 실험에서는 파킨슨 모델을 만들기 위해 수컷 C57BL/6 쥐에 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP) 30 mg/kg과 프로베네시드 20 mg/kg을 매 12시간마다 10회 투여(총 5일)하여 파킨슨병을 유발하였다. 이후 운동군을 경사도 $0^{\circ}$, 18 m/min의 속도로, 하루 40분의 트레드밀 운동을 수행하였다. 운동수행의 마지막에는 모든(염류 비교군, 비운동 비교군) 동물의 뇌를 적출하여 신경원성, 신경화학적 변화가 어떤지 비교군, 비운동군과 비교분석하였다. 본 실험에서 Synphilin 단백질은 알파시누크린의 발현 징후로 사용되었다. 흑질과 선조체의 뇌세포를 western blotting에 의해 염색하여 분석하였다. 결 과 : 염류 비교군의 경우 synphilin 단백질의 발현이 발견되지 않았다. 파킨슨 유발을 위한 MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) 투여는 알파시누크린의 응집을 의미하는 synphilin 단백질의 발현이 급증하였다. 하지만, 트레드밀 운동군에서는 synphilin 단백질의 발현이 비운동군에 비해 유의하게 낮았다. 이는 트레드밀 운동이 알파시누크린의 응집도를 낮추는데 영향을 미친다는 것으로 사료된다. 결 론 : 본 연구에는 트레드밀 운동이 파킨슨 모델의 뇌에서 알파시누크린 응집체의 제거를 촉진하고, 병의 진행, 세포사멸을 억제하는 것으로 밝혀졌다.

Keywords

References

  1. Colcher A, Simuni T. Clinical manifestations of Parkinson's disease. Med Clin North Am. 1999;83:327-47. https://doi.org/10.1016/S0025-7125(05)70107-3
  2. Adler CH. Nonmotor complications in Parkinson's disease. Mov Disorder 20 Suppl. 2005;11:S23-9.
  3. Hornykiewicz O, Kish SJ. Biochemical pathophysiology of Parkinson's disease. In: Advances in neurology(Yahr MD, Bergmann KJ, eds). Cambridge, Ma, USA:Perseus Publishers. 1987;45:19-34.
  4. Bilowit DS. Establishing physical objectives in rehabilitation of patients with Parkinson's disease (gymnasium activities). Physical Ther Rev. 1956;36:176-8. https://doi.org/10.1093/ptj/36.3.176
  5. Knott M. Report of case of parkinsonism treated with proprioceptive facilitation techniques. Physical Ther Rev. 1957;37:229. https://doi.org/10.1093/ptj/37.4.229
  6. Franklyn S, Kohout LJ, Stren GM, Dunning M. Physiotherapy in Parkinson's disease. In: Research progress in Parkinson's disease(Rose FC, Capiledo R, eds). Tunbridge wells: Pittman Medical Ltd. 1981:397-400.
  7. Szekely BC, kosanovich NN, Sheppard W. Adjunctive treatment in Parkinson's disease: physical therapy and comprehensive group therapy. Rehabil Lit. 1982;43:72-6.
  8. Hirsch EC. Nifrostriatal system plasticity in Parkinson's disease: effect of dopaminergic denervation and treatment. Ann neurol. 2000;47:S115-20.
  9. Toole T, Hirsch MA, Forkink A, Lehman DA, Maitland CG. The effects of abalance and strength training program on equilibrium in parkinsonism: a preliminary study. Neurorehabilitation. 2000;14:165-74.
  10. Sasco AJ, Paffenbarger RS Jr, Gendre I, Wing Al. Therole of physical exercise in the occurrence of Parkinson's disease. Arch neurol. 1992;49:360-5. https://doi.org/10.1001/archneur.1992.00530280040020
  11. Brasted PJ, Watts C, Torres EM, Robbins TW, Dunnett SB. Behavioural recovery following striatal transplantation: effects of postoperative training and P-zone volume. Exp Brain Res. 1999;128;535-8. https://doi.org/10.1007/s002210050877
  12. 1Lewy FH, Lewandowski M, Abelsdorff G. In Paralysis Agitans. Handbuch der Neurologie. Springer-Verlag, Berlin, Ed. III, S.1912;920-33.
  13. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. a-Synuclein in Lewy bodies. Nature. 1997;388:839-40. https://doi.org/10.1038/42166
  14. Jellinger KA. Post mortem studies in Parkinson's disease-Is it possible to detect brain areas for specific symptoms? J. Neural Transm. Suppl. 1999:56,129.
  15. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R. Mutation in the a-synuclein gene identified in families with Parkinson's disease. Science. 1997;276:2045-7. https://doi.org/10.1126/science.276.5321.2045
  16. Bostantjopoulou S, Katsarou Z, Papadimitriou A, Veletza V, Hatzigeorgiou G, Lees A. Clinical features of parkinsonian patients with the a-synuclein (G209A) mutation. Mov. Disord. 2001;16:1007-13. https://doi.org/10.1002/mds.1221
  17. Tillerson JL, Caudle WM, Reveron ME, Miller GW. Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease. J Neurosci. 2003;119:899-911. https://doi.org/10.1016/S0306-4522(03)00096-4
  18. Fisher BE, Petzinger GM, Nixon K, Hogg E, Bremmer S, Meshul CK, Jakowec MW. Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-leisoned mouse basal ganglia. J Neurosci Res. 2004;7:378-90.
  19. Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS. Mouse model of Parkinsonism: A comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience. 2001;106:589-601. https://doi.org/10.1016/S0306-4522(01)00295-0
  20. Jackson-Lewis V, Jakowec M, Burke RE, Przedbroski S. Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine. Neurodegeneration. 1995;4:257-69. https://doi.org/10.1016/1055-8330(95)90015-2
  21. Tatton NA, Kish SJ. In situ detection of apoptotic nuclei in the subtantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. J Neurosci. 1997;77:1037-48. https://doi.org/10.1016/S0306-4522(96)00545-3
  22. Lau YS, Trobough KL, Crampton JM, Wilson JA. Effects of probenecid on striatal dopamine depletion in acute and long-term 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-treated mice. Gen Phamacol. 1990;21:181-7.
  23. Lau YS. Progressive neurodegeneration in the chronic MPRP/probenecid model of Parkinson's disease. In: Parkinson's disease(Ebidi M, Pfeiffer R, eds). CRC Press, Boca Raton, FL; 2005:109-15
  24. Serra PA, Sciola L, Delogu MR. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induces apoptosis in mouse of nigrostriatal glia. Relevance to nigral neuronal death and striatal neurochemical changes. J Biol Chem. 2002;277:3451-61.
  25. Jones TA, Schallert T. Use-dependent growth of pyramidal neurons after neocortical damage. J Neurosci. 1994;14:2140-52. https://doi.org/10.1523/JNEUROSCI.14-04-02140.1994
  26. Palmer SS, Mortimer JA, Webster DD, Bistevins R, Dickinson GL. Exercise therapy for Parkinson's disease. Arch. Phys. Med. Rehab. 1986;67:741-5. https://doi.org/10.1016/0003-9993(86)90007-9
  27. Hurwitz A. The benefit of a home exercise regiment for ambulatory Parkinson's disease patients. J Neurosci. Nurs. 1989;21:180-4. https://doi.org/10.1097/01376517-198906000-00008
  28. Tillerson JL, Cohen AD, Caudle WM, Zigmond MJ, Schallert T, Miller GW. Forced nonuse in unilateral Parkinsonian rats exacerbates injury. J Neurosci. 2002;22:6790-9.
  29. Tu PH, Galvin JE, Baba M, Giasson B, Tomita T, Leight S, Nakajo S, Iwatsubo T, Trojanowski JQ, Lee VM. Glial cytoplasmic inclusion in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann neurol. 1998;44:415-22. https://doi.org/10.1002/ana.410440324
  30. Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am J Pathol. 1998;152:879-84.
  31. Hashimoto M, Hsu LJ, Sisk A, Xia Y, Takeda A, Sundsmo M, Masliah E. Human recombinant NACP/alpha-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease. Brain Res. 1998;799:301-6. https://doi.org/10.1016/S0006-8993(98)00514-9
  32. Hashimoto M, Masliah E. Alpha-synuclein in Lewy body disease and Alzheimer's disease. Brain Pathol. 1999;9:707-29. https://doi.org/10.1111/j.1750-3639.1999.tb00552.x
  33. Iseki E, Marui W, Kosaka K, Akiyama H, Ueda K, Iwatsubo T. Degenerative terminals of the perforant pathway are human alpha-synuclein-immunoreactive in the hippocampus of patients with diffuse Lewy body disease. Neurosci Lett. 1998;258:81-4. https://doi.org/10.1016/S0304-3940(98)00856-8
  34. Trojanowsi JQ, Lee VM. Parkinson's disease and related neurodegenerative synucleinopathies linked to progressive accumulation of synuclein aggregates in brain. Parkinsonism Relat Disord. 2001;7:247-51. https://doi.org/10.1016/S1353-8020(00)00065-1
  35. Duda JE, Giasson BI, Chen Q, Gur TL, Hurtig HI, Stern MB, Gollomp SM, Ischiropoulos H, Lee VM, Trojanowski JQ. Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies. Am J Pathol. 2000;157:1439-45. https://doi.org/10.1016/S0002-9440(10)64781-5
  36. Giasson BI, Duda JE, Murray IV, Chen Q, Souza JM, Hurting HI, Ischiropoulos H, Trojanowski JQ, Lee VM. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science. 2000;290:985-9. https://doi.org/10.1126/science.290.5493.985
  37. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T. Alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4:160-4. https://doi.org/10.1038/ncb748
  38. Saito Y, Kawashima A, Ruberu NN, Fujiwara H, Koyama S, Sawabe M, Arai T, Nagura H, Yamanouchi H, Hasegawa M, Iwatsubo T, Murayama S. Accumulation of phosphorylated alpha-synuclein in aging human brain. J Neuropathol Wxp Neurol. 2003;62:644-54. https://doi.org/10.1093/jnen/62.6.644
  39. Novikova L, Garris BL, Garris DR, Lau YS. Early signs of neuronal apoptosis in the subtantia nigra pars compacta of the progressive neurodegenerative mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model of Parkinson's disease. Neuroscience. 2006;140:67-76. https://doi.org/10.1016/j.neuroscience.2006.02.007
  40. Lang AE, Lozano AM. Parkinson's disease. First of two parts. N Engl J Med. 1998;339:1044-53. https://doi.org/10.1056/NEJM199810083391506
  41. Kumar R, Lozano AM, Kim YJ, Hutchison WD, Sime E, Halket E, Lang AE. Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson's disease. Neurology. 1998;51:850-5. https://doi.org/10.1212/WNL.51.3.850
  42. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cellline-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993;260:1130-2. https://doi.org/10.1126/science.8493557
  43. Kitagawa H, Hayashi T, Mitsumoto Y, Koga N, Itoyama Y, Abe K. Reduction of ischemic brain injury by topical application of glial cell line-derived neurotrophic factor after permanent middle cerebral artery occlusion in rats. Stroke. 1998;29:1417-22. https://doi.org/10.1161/01.STR.29.7.1417
  44. Li L, Wu W, Lin LF, Lei M, Oppenheim RW, Houenou LJ. Rescue of adult mouse motoneurons from injury-induced cell death by glial cell line-derived neurotrophic factor on hippocampal neurons after traumatic brain injury in rats. J Neurosurg. 2001;95:674-9. https://doi.org/10.3171/jns.2001.95.4.0674
  45. Tomac A, Lindqvist E, Lin LF, Ogren SO, Young D, Hoffer BJ, Olson L. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature. 1995;373:335-9. https://doi.org/10.1038/373335a0
  46. Conner J, Lauterborn J, Yan Q, Gall C, Varon S. Distribution of brain-dervied neurotrophic factor(BDNF)protein and mRNA in the normal adult rat CNS:evedence for anterograde axonal transport. J Neurosci. 1997;17:2295-313. https://doi.org/10.1523/JNEUROSCI.17-07-02295.1997
  47. Ivanova T, Beyer C. Pre-and Postnatal expression of brain-derived neurotrophic factor mRNA/protein and tyrosine protein kinase receptorB mRNA in the mouse hippocampus. Neurosci Lett. 2001;307:21-4. https://doi.org/10.1016/S0304-3940(01)01905-X
  48. Murer M, Yan Q, Rainman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Progneurobiol. 2001;63:71-124.
  49. Das K, Chao S, White L, Haines W, Harry G, Tilson H. Differential patterns of nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 mRNA and protein levels in developing regions of rat brain. J Neurosci. 2001;103:739-61. https://doi.org/10.1016/S0306-4522(01)00011-2
  50. Mu JS, Li WP, Yao ZP, Zhou XF. Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Res. 1999;835:259-65. https://doi.org/10.1016/S0006-8993(99)01592-9
  51. Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD. From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Memory. 2002;9:224-37. https://doi.org/10.1101/lm.51202
  52. Fahnestock M, Garzon D, Holsinger RMD, Michalski B. Neurotrophic factors and Alzheimer's disease: are we focusing on the wrong molecule? J Neuro Transm Suppl. 2002;62:241-52.
  53. karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiat Res. 2002;109:143-8. https://doi.org/10.1016/S0165-1781(02)00005-7
  54. Kruttgen A, Saxena S, Evangelopoulos ME, Weis J. Neurotrophins and neurodegenerative disease: Receptors stuck in traffic? J Neuropath Exp Neur. 2003;62:340-50. https://doi.org/10.1093/jnen/62.4.340
  55. Batchelor PE, Liberatore GT, Wong JY, Porritt MJ, Frerichs F, Donnan GA, Howells DW. Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-delived neurotrophic factor. J Neurosci. 1999;19:1708-16. https://doi.org/10.1523/JNEUROSCI.19-05-01708.1999