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THE SOLUTIONS OF A PERTURBED ELLIPTIC

EQUATION WITH EXPONENTIAL GROWTH

Tacksun Jung and Q-Heung Choi∗

Abstract. We show the existence of the solutions for the following
nonlinear elliptic problem under the Dirichlet boundary condition.
To show the existence of the solutions we use the variational formu-
lation.

1. Introduction and statement of main result

In this paper we study the following nonlinear elliptic problem under
the Dirichlet boundary condition
{ −∆u = a(x)g(u) + f(x) in Ω, u ∈ C2(Ω) (1.1)

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with a smooth boundary ∂Ω, f is a
given function in L2(Ω), and a : Ω → R is a continuous function which
changes sign on Ω, so that the open sets

Ω+ = {x ∈ Ω | a(x) > 0} and Ω− = {x ∈ Ω|a(x) < 0}
are both nonempty. We shall write a = a+−a−, where a+ = a ·χΩ+ and
a− = −a · χΩ− . We mainly deal with the case N = 2. We assume that
g satisfies the following conditions:
(g1) g ∈ C(R,R),
(g2) there is a constant A0 > 0 such that

|g(ξ)| ≤ A0 expφ(ξ) for ξ ∈ R,
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where φ : R → R is a function satisfying φ(ξ)ξ−2 → 0 as |ξ| → ∞,
(g3) there are constants µ > 2 and r0 ≥ 0 such that

0 < µG(ξ) = µ

∫ ξ

0

g(t)dt ≤ ξg(ξ) for |ξ| ≥ r0.

(g4) there exist 0 < α1 ≤ α2 < 2, A1, A2 > 0, and B1, B2 ≥ 0 such that

A1 exp|ξ|
α1 −B1 ≤ G(ξ) =

∫ ξ

0

g(t)dt ≤ A2 exp|ξ|
α2 +B2 for ξ ∈ R,

where α1, α2 are further restricted by

2

α2

− 2 >
1

α1

.

Remark that the conditions 0 < α1 ≤ α2 < 2 and 2
α2
−2 > 1

α1
imply α2 <

1
2
. Note that (g3) implies the existence of positive constants a1, a2, a3

such that
1

µ
(ξg(ξ) + a1) ≥ G(ξ)+a2 ≥ a3|ξ|µ for ξ ∈ R. (1.2)

Khanfir and Lassoued [10] prove that if
f = 0,
g is locally Hölder continuous on R+,
g(u) = o(u) as u → 0+,
g(u)u ≥ β

∫ u

0
g(t)dt > 0 for u > 0, β ∈]2, 2N

N−2
[,

g(u) ≤ C1

(
uβ−1 + 1

)
,

then there exists a sequence (βn)n≥1 of nonnegative reals strictly increas-

ing to the real 2∗ = 2N
N−2

such that β < βn and MR = o
(
R

2
(β−1)n

)
, the

problem (1.1) has at least one solution. They also prove that there exists
an ε > 0 depending on g and a+ such that if

∫
Ω− a−dx < ε, problem (1.1)

has at least one solution.
In this paper, we shall investigate the existence of solutions of the

problem (1.1) by the variational method. It is well known that the
solution of problem (1.1) corresponds to the nonzero critical point of the
functional

I(u) =
1

2

∫

Ω

|∇u|2 −
∫

Ω

a(x)G(u)dx−
∫

Ω

fudx.

We will prove the following: If the function g(u)u− µG(u) is bounded,
then I satisfies the Palais-Smale condition and the mountain pass the-
orem gives a solution of (1.1), which is bounded (cf. Theorem 1.1).
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Moreover, if g(u)u − µG(u) is not bounded and there exists an ε > 0
such that

∫
Ω− a−dx < ε, then I also satisfies the Palais-Smale condition

and the mountain pass theorem and the variational method [13] give at
least two solution of (1.1), one of which is bounded and the other solu-
tion is large norm(cf. Theorem 1.2(1) and (2)).
Our main results are as follows:

Theorem 1.1. Assume that g satisfies (g1)− (g4), g(u)u− µG(u) is
bounded, and f ∈ L2(Ω). Then problem (1.1) has at least one solution,
which is bounded.

Theorem 1.2. Assume that g satisfies (g1)− (g4), g(u)u− µG(u) is
not bounded, and f ∈ L2(Ω). We also assume that there exists a small
ε > 0 such that

∫
Ω− a−(x) < ε. Then problem (1.1) has at least two

solutions, (1) one of which is bounded and (2) the other solution is large
norm such that for any M ,

max
x∈Ω

|u(x)| > M.

Theorem 1.1 and 1.2 will be proved in Section 2 and Section 3 via vari-
ational methods. An outline of this paper is as follows: in Section 2 we
introduce a functional I whose critical points and weak solutions of (1.1)
possess one-to-one correspondence. Next we prove that I ∈ C1(E,R)
and satisfies the Palais-Smale condition. We introduce subspaces En

such that there exists an Rn > 0 such that I(un) ≤ 0 for un ∈ En\BRn .
Next we introduce minimax values bn and use the fact that there exist
θ1 > 0 and N1 ∈ N such that

bn ≥ θ1n (log n)
2

α2
−2

for all n ≥ N1,

to show that for n large enough, bn > 0 is a critical value of I in each
Dn = BRn ∩E. Furthermore we prove that if g(u)u−µG(u) is bounded
and u is a critical point of I, then I(u) is bounded, from which u is
bounded. In Section 3 we prove Theorem 1.2(2). From the fact that for
n large enough, bn > 0 is a critical value of I and limn→∞ bn = +∞,
we prove that if g(u)u − µG(u) is not bounded, u is a critical point of
I, and for some real K, max

Ω
|u(x)| ≤ K, then I(u) is bounded, which

contradicts to the fact that limn→∞ bn = +∞. So we complete the proof
of Theorem 1.2(2).
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2. Variational formulation and proof of Theorem 1.1

E = H1
0 (Ω) be the completion of C∞

0 (Ω) with respect to the norm

‖u‖ =

(∫

Ω

|∇u|2dx

) 1
2

,

and let us use the notation:

‖u‖Lp(Ω) =

(∫

Ω

|u|pdx

) 1
p

for p ∈ [1,∞).

We consider the following functional associated with (1.1)

I(u) =

∫

Ω

1

2
|∇u|2dx−

∫

Ω

a(x)G(u)dx

−
∫

Ω

f(x)udx for u ∈ E, (2.1)

where

G(u) =

∫ u

0

g(t)dt.

From (g1) and (g2), I is well defined. The solutions of (1.1) coincide with
the nonzero critical points of I(u). From the assumptions (g1)− (g4) we
can obtain the following propositions (For the proof of Proposition 2.1,
we refer to Appendix B in [13]).

Proposition 2.1. Assume that g satisfies (g1)−(g4) and f ∈ L2(Ω).
Then I(u) is continuous and Fréchet differentiable in E with Fréchet
derivative

I ′(u)h =

∫

Ω

[∇u · ∇h− a(x)g(u)h− f(x)h]dx for h ∈ E. (2.2)

If we set

H(u) =

∫

Ω

a(x)G(u)dx,

then H ′(u) is continuous with respect to weak convergence, H ′(u) is
compact, and

H ′(u)h =

∫

Ω

a(x)g(u)hdx for all h ∈ E.

This implies that I ∈ C1(E,R) and H(u) is weakly continuous.
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Proposition 2.2. Assume that g satisfies (g1)-(g4) and f ∈ L2(Ω).
We also assume that g(u)u−µG(u) is bounded, or there exists an ε > 0
such that

∫
Ω− a−(x)dx < ε even if g(u)u − µG(u) is unbounded. Then

I(u) satisfies the Palais-Smale condition: If for a sequence (um), I(um) is
bounded from above and I ′(um) → 0 as m →∞, then (um) is bounded.

Proof. Suppose that (um) is a sequence with I(um) ≤ M and I ′(um) →
0 as m → ∞. Then by (g2), (g3), (g4), and Hölder inequality and
Sobolev Embedding Theorem, for large m and µ > 2 with u = um, we
have

Mµ + ‖u‖ ≥ µI(u)− I ′(u)u

=
(µ

2
− 1

)
‖u‖2 +

∫

Ω

a(x)[g(u)u− µG(u)]dx− (µ− 1)

∫

Ω

f(x)udx

=
(µ

2
− 1

)
‖u‖2 +

∫

Ω

a+(x)[g(u)u− µG(u)]dx

−
∫

Ω

a−(x)[g(u)u− µG(u)]dx (µ− 1) ‖f‖L2(Ω)‖u‖L2(Ω)

≥
(µ

2
− 1

)
‖u‖2 −max

Ω
|g(u)u− µG(u)|

∫

Ω−
a−(x)dx− C‖u‖.

Thus if g(u)u− µG(u) is bounded, or if there exists an ε > 0 such that∫
Ω− a−(x) < ε, then we have

M1 (1 + ‖u‖) ≥
(µ

2
− 1

)
‖u‖2 for M1 > 0,

from which the boundedness of (um) follows. On the other hand, let
D : E → E∗ denote the duality map between E and E∗. Then for
u, ϕ ∈ E,

(Dum) ϕm =

∫

Ω

∇um · ∇ϕmdx.

Then D−1I ′(um) = um − D−1P(um), where P : E → E∗ is compact.
Therefore, boundedness of (um) implies D−1P(um) converges along a
subsequence. Hence by the assumption I ′(um) → 0, we can conclude
that {um} is relatively compact in E.

Now, we consider the following eigenvalue problem

−∆u = λu in Ω, (2.3)

u = 0 on ∂Ω.
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The eigenvalue problem (2.3) possesses a sequence of eigenvalues such
that 0 < λ1 < λ2 ≤ λ3 ≤ . . . (with repetitions according to the mul-
tiplicity of each eigenvalue). We denote by ej the eigenfunction which
corresponds to λj, where we may assume

∫
Ω
∇ei·∇ejdx = δij for i, j ∈ N .

Let En ≡ span{e1, . . . , en}. We note that

‖u‖ ≤ λ
1
2
n‖u‖L2(Ω) for u ∈ En. (2.4)

From now on we will assume that g(u)u− µG(u) is bounded. The next
proposition shows that I satisfies the one of the geometrical assumptions
of the mountain pass theorem (cf. [2])

Proposition 2.3. Assume that g satisfies (g1)−(g4), and f ∈ L2(Ω).
We also assume that there exists an ε > 0 such that a−(x) < ε. Then
there exists an Rn > 0 such that

I(u) ≤ 0 for u ∈ En\BRn , (2.5)

where BRn ≡ {u ∈ E | ‖u‖ ≤ Rn}.
Proof. If we choose ψ ∈ E such that ‖ψ‖ = 1, ψ ≥ 0 in Ω and

supp(ψ) ⊂ Ω+, then, by (1.2), (2.4), the Hölder inequality, and the
Sobolev Embedding Theorem, we have

I(tψ) ≤ 1

2
t2 −

∫

Ω+

a(x) (a3t
µψµ − a4) + ‖f‖L2(Ω)‖u‖L2(Ω)

≤ 1

2
t2 − a3t

µ

∫

Ω+

a(x)ψµ + C1 + C2t

≤ 1

2
t2 − a3t

µ‖a(x)
1
µ
·ψ‖µ

Lµ(Ω) + C1 + C2t

≤ 1

2
t2 − a3t

µ‖a(x)
1
µ · ψ‖µ

L2(Ω) + C1 + C2t

≤ 1

2
t2 − a3λ

−µ
2

n tµ‖a(x)
1
µ · ψ‖µ + C1 + C2.

Since µ > 2, there exist a tn great enough for each n and an Rn > 0
such that un = tnψ and I(u) ≤ 0 if un ∈ En\BRn and ‖un‖ > Rn.

Here, we may assume that Rn < Rn+1 for all n ∈ N .
Now we set Dn = BRn ∩ En, ∂Dn = ∂BRn ∩ En, and

Γn = {γ ∈ C([0, 1], E) | γ(0) = 0 and γ(1) = un}.
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Define
bn = inf

γ∈Γn

max
[0,1]

I(γ(u)), n ∈ N.

As in Proposition 4.1 in [16], we have the following proposition.

Proposition 2.4. There exist θ1 > 0 and N1 ∈ N such that

bn ≥ θ1 · n · (log n)
2

α2
−2

for all n ≥ N1.

By Proposition 2.4, there exist θ1 and Ñ ∈ N such that

bn > 0 for all n ∈ Ñ . (2.6)

Proof of Theorem 1.1 and 1.2(1). (1) Assume that g(u)u−µG(u)
is bounded. From Proposition 2.1 and 2.2, I ∈ C1(E, R) and satisfies
the Palais-Smale condition. From Proposition 2.3 and 2.4, there exists

an ˜̃N such that for all n ≥ ˜̃N ≥ Ñ ,
(1) bn > 0,
(2) there exists an un ∈ En\BRn such that I(un) ≤ 0.
We note that I(0) = 0. The above facts shows that I(u) satisfies the
geometrical assumptions of the mountain pass theorem. Therefore by

the mountain pass theorem, I(u) has a critical value bn > 0 for n ≥ ˜̃N .
We denote by ũn a critical point of I such that I(ũn) = bn. Now, we
claim that there exists a constant Cn > 0 such that

‖ũn‖2 ≤ Cn

(
1 + Ln

∫

Ω

a−dx

)
, (2.7)

where Ln = max
Ω
|g(ũn)ũn − µG(ũn)|. In fact, we have

bn ≤ max I(tun),

and

I(tun) =
1

2
t2‖un‖2 −

∫

Ω

a+(x)G(tun)dx

+

∫

Ω

a−(x)G(tun)dx + t‖f‖L2(Ω)‖u‖L2(Ω)

≤ t2‖un‖2 − a3t
µ

∫

Ω

a+(x)|un|µ + a4

∫

Ω

a+(x)dx

+A2e
tα2

∫

Ω

a−(x)e|un|α2dx + B2

∫

Ω

a−(x)dx + C1t

≤ Ct2 − Ctµ + Cetα2 + C + Ct.
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Since 0 ≤ t ≤ 1, bn is bounded: bn ≤ Cn for all n ≥ ˜̃N .
We can write

µbn = µI(ũn)− I ′(ũn)ũn

=
(µ

2
− 1

)
‖ũn‖2 +

∫

Ω

a(x)[g(ũn)ũn − µG(ũn)]− (µ− 1)

∫

Ω

fũn

≥
(µ

2
− 1

)
‖ũn‖2 −

∫

Ω

a−(x)[g(ũn)ũn − µG(ũn)]

−b1(µ− 1)‖f‖‖ũn‖
So (µ

2
− 1

)
‖ũn‖2 ≤ µbn + Ln

∫

Ω−
a−(x)dx + b2.

Thus we have

‖ũn‖2 ≤ Cn

(
1 + Ln

∫

Ω−
a−(x)dx

)

and the proof of Theorem 1.1 is complete.
On the other hand, by Proposition 2.2, if g(u)u−µG(u) is not bounded
and there exists an ε > 0 such that

∫
Ω− a−(x)dx < ε, then I(u) satisfies

the Palais-Smale condition. Proposition 2.3, 2.4, and the mountain pass

theorem show that there exists a ˜̃N such that I(u) has a critical value bn

with critical point ũn such that I(ũn) = bn for all n ≥ ˜̃N . If
∫
Ω− a−(x)dx

is sufficiently small, by (2.7), we have

‖ũn‖2 ≤ Cn for Cn > 0,

from which we can conclude that ũn is bounded and the proof of Theorem
1.2(1) is complete.

3. Proof of Theorem 1.2(2)

We assume that g(u)u − µG(u) is not bounded, and there exists an
ε > 0 such that

∫
Ω− a−(x)dx < ε. From Proposition 2.1 and 2.2, I ∈

C1(E,R) and satisfies the Palais-Smale condition. From Proposition 2.3,
there exists an Rn > 0 such that I(un) ≤ 0 for un ∈ En\BRn . We note
that I(0) = 0. By Proposition 2.4 and Mountain pass theorem, we see
that for n large enough bn > 0 is a critical value of I and

lim
n→∞

bn = +∞. (3.1)
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We denote by ũn a critical point of I such that I(ũn) = bn. Then
we claim that for each real number M , max

Ω
|ũn(x)| ≥ M . In fact,

−∆u = a(x)g(u) + f(x) and max
Ω
|ũn(x)| ≤ K imply

I(ũn) ≤ max
|ũn|≤K

(
1

2
g(ũn)ũn −G(ũn)

) ∫

Ω

|a(x)| − 1

2

∫

Ω

fũn,

which means that bn is bounded, which contradicts to the fact (3.1).
Thus the proof is complete.
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