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COVERING AND INTERSECTION CONDITIONS FOR

PRIME IDEALS

Gyu Whan Chang and Chul Ju Hwang∗

Abstract. Let D be an integral domain, P be a nonzero prime
ideal of D, {Pα|α ∈ A} be a nonempty set of prime ideals of D, and
{Iβ |β ∈ B} be a nonempty family of ideals of D with ∩β∈BIβ 6= (0).
Consider the following conditions:

(i) If P ⊆ ∪α∈APα, then P = Pα for some α ∈ A;
(ii) If ∩β∈BIβ ⊆ P , then Iβ ⊆ P for some β ∈ B.

In this paper, we prove that D satisfies (i) ⇔ D is a generalized
weakly factorial domain of dim(D) = 1 ⇒ D satisfies (ii) ⇔ D is a
weakly Krull domain of dim(D) = 1. We also study the t-operation
analogs of (i) and (ii).

1. Introduction

Let R be a commutative ring with identity, and let Spec(R) be the
set of prime ideals of R. Consider the following property: (A) If a
prime ideal P of R is contained in ∪α∈APα, where Pα ∈ Spec(R) for
each α ∈ A, then P ⊆ Pα for some α ∈ A (we may assume that P 6= (0)
since the zero ideal of R is contained in any ideal). In [10, Theorem 1.1],
the authors proved that if R is a Noetherian ring, then R satisfies (A) if
and only if every prime ideal of R is the radical of a principal ideal. This
result was completely generalized to arbitrary rings by Smith. In [11,
Theorem], Smith proved that R satisfies (A) if and only if every prime
ideal of R is the radical of a principal ideal.
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Let {Pα}α∈A be a nonempty subset of Spec(R); then S = R \∪α∈APα

is a saturated multiplicative subset of R [9, Theorem 2]. So if I is an
ideal of R with I ⊆ ∪α∈APα, then I ∩ S = ∅, and hence there is a prime
ideal P of R such that I ⊆ P and P ∩S = ∅ (equivalently, P ⊆ ∪α∈APα).
Thus the property (A) is equivalent to the following covering condition:
for any ideal I of R and any nonempty set {Pα}α∈A of prime ideals of
R, the inclusion I ⊆ ∪α∈APα implies that I ⊆ Pα for some α ∈ A.
Also, the natural dual of the property (A) is the following intersection
condition:

(#) If P ∈ Spec(R) and if {Iα}α∈B is a nonempty family of ideals of
R, then P contains ∩α∈SIα only if P contains some Iα.

Gilmer proved that R satisfies (#) if and only if R is zero dimensional
and semi-quasilocal [5, Theorem 2]. For any h ∈ R, let Xh = {P ∈
Spec(R)|h 6∈ P} and V (h) = Spec(R) \Xh. In [6], we studied a ring R
with the following property: (∗∗) for any f and gα of R, Xf ⊆ ∪αXgα

implies Xf ⊆ Xgα for some α. In [7, Theorem], the second author
proved that R satisfies (∗∗) if and only if Spec(R) is linearly ordered
under inclusion, if and only if, for any f and hβ of R, V (f) ⊆ ∪βV (hβ)
implies V (f) ⊆ V (hβ) for some β.

In this paper, we continue our research on covering and intersection
conditions for prime ideals. First, we consider the following conditions
that are weaker than the poperties (A) and (#): Let P be a nonzero
prime ideal of R, {Pα|α ∈ A} be a nonempty subset of Spec(R), and
{Iβ|β ∈ B} be a nonempty family of ideals of R with ∩β∈BIβ 6= (0).

(A) If P ⊆ ∪α∈APα, then P ⊆ Pα for some α ∈ A.
(B) If P ⊆ ∪α∈APα, then P = Pα for some α ∈ A.
(C) If ∩β∈BIβ ⊆ P , then Iβ ⊆ P for some β ∈ B.

Clearly, (B) implies (A); so if R is an integral domain, then R satisfies
(B) if and only if dim(R) = 1 and every prime ideal of R is the radical
of a principal ideal (see Theorem 2.3). In Section 2, we prove that D
satisfies (B)⇔ D is a generalized weakly factorial domain of dim(D) = 1
⇒ D satisfies (C) ⇔ D is a weakly Krull domain of dim(D) = 1.

Next, in Section 3, we study the t-operation analogs of the properties
(A), (B), and (C). Let D be an integral domain, P be a prime t-ideal
of D, {Pα|α ∈ A} be a nonempty collection of prime t-ideals of D, and
{Iβ|β ∈ B} be a nonempty family of t-ideals of D with ∩β∈BIβ 6= (0).

(A′) If P ⊆ ∪α∈APα, then P ⊆ Pα for some α ∈ A.
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(B′) If P ⊆ ∪α∈APα, then P = Pα for some α ∈ A.
(C′) If ∩β∈BIβ ⊆ P , then Iβ ⊆ P for some β ∈ B.

We show that D satisfies (B′) if and only if D is a GWFD and that D is
a weakly Krull domain if and only if t-dim(D) = 1 and D satisfies (C′).
As a corollary, we have that a PvMD D is a generalized Krull domain if
and only if D satisfies (C′).

All rings considered in this paper are commutative rings with identity.
Throughout this paper, we use the notations (#), (A), (B), (C), (A′),
(B′), and (C′) to denote the covering and intersection conditions for
prime ideals. Undefined notations and definitions are standard as in [4]
and [9].

2. The conditions (A), (B) and (C)

Let R be a commutative ring with identity. Then dim(R) denotes
the (Krull) dimension of R. It is clear that dim(R) = 0 if and only if
every prime ideal of R is maximal, while if R is an integral domain, then
dim(R) = 1 if and only if every nonzero prime ideal of R is maximal.
We begin this section with the following lemma which is essential in the
subsequent arguments.

Lemma 2.1. ([3, Theorem 2.1]) Let I be a proper ideal of a ring R.
If every minimal prime ideal of I is the radical of a finitely generated
ideal, then I has only finitely many minimal prime ideals.

In [5, Theorem 2], Gilmer showed that R satisfies (#) if and only if R
is zero-dimensional and semi-quasilocal. So if R is an integral domain,
then R satisfies (#) if and only if R is a field. We next give more
equivalent conditions of (#).

Proposition 2.2. The following statements are equivalent for a ring
R.

(1) R satisfies (#).
(2) R satisfies (B).
(3) dim(R) = 0 and R is semi-quasilocal.
(4) dim(R) = 0 and every prime ideal of R is the radical of a finitely

generated ideal.
(5) dim(R) = 0 and every prime ideal of R is the radical of a principal

ideal.
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Proof. (1) ⇔ (3) [5, Theorem 2]. (2) ⇒ (5) Clearly, every prime
ideal of R is maximal; so dim(R) = 0. Also, note that R satisfies (A),
and thus every prime ideal of R is the radical of a principal ideal [11,
Theorem]. (5) ⇒ (4) Clear, (4) ⇒ (3) Since dim(R) = 0, each prime
ideal of R is minimal over the zero ideal. Thus the result follows directly
from Lemma 2.1. (3) ⇒ (2) This is an immediate consequence of [9,
Theorem 81].

Let X1(D) be the set of height-one prime ideals of an integral domain
D. We say that D is a weakly Krull domain if D = ∩P∈X1(D)DP and the
intersection has finite character. Also, D is a generalized weakly factorial
domain (GWFD) if each nonzero prime ideal of D contains a principal
primary ideal. It is known that if D is a GWFD, then D is a weakly
Krull domain [2, Corollary 2.3].

In [6, page 682], we noted that R satisfies (B) if and only if every prime
ideal of R is the radical of a principal ideal and every nonzero prime ideal
is maximal and that if R is an integral domain of dim(R) = 1, then (A)
and (B) are the same conditions. We next study integral domains with
the properties (B) and (C).

Theorem 2.3. Consider the following statements for an integral do-
main D.

(1) D is a semi-quasilocal domain of dim(D) = 1.
(2) D satisfies (B).
(3) dim(D) = 1 and every prime ideal of D is the radical of a principal

ideal.
(4) dim(D) = 1 and D is a GWFD.
(5) D satisfies (C).
(6) For any 0 6= a ∈ D, the quotient ring D/aD satisfies (#).
(7) dim(D) = 1 and every prime ideal of D is the radical of a two

generated ideal.
(8) dim(D) = 1 and every prime ideal of D is the radical of a finitely

generated ideal.
(9) dim(D) = 1 and D is a weakly Krull domain.

Then (1) ⇒ (2) ⇔ (3) ⇔ (4) ⇒ (5) ⇔ (6) ⇔ (7) ⇔ (8) ⇔ (9).

Proof. (1) ⇒ (3) Let {P1, . . . , Pn} be the set of nonzero prime ideals
of D. Then, since dim(D) = 1, we have Pi * ∪j 6=iPj for each Pi [9,
Theorem 81]. So if ai ∈ Pi \ (∪j 6=iPj), then Pi is the unique prime ideal
of D containing ai, and thus Pi =

√
aiD.
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(2)⇔ (3) It is clear that if D satisfies (B), then dim(D) = 1. Thus the
result follows directly from [11, Theorem] since (A) and (B) are identical
for one-dimensional integral domains.

(3) ⇔ (4) [2, Theorem 2.2].

(3) ⇒ (7) ⇒ (8) Clear.

(5)⇔ (6) This follows from the fact that for any 0 6= a ∈ D, if {Iβ|β ∈
B} is a set of ideals of D containing a, then (∩Iβ)/aD = ∩(Iβ/aD).

(6) ⇒ (7) First, note that dim(D/aD) = 0 for any 0 6= a ∈ D by
Proposition 2.2. Thus dim(D) = 1. Next, let P be a nonzero prime ideal
of D, and choose 0 6= b ∈ P . Then D/bD satisfies (#) by (6), and hence

P/bD is the radical of a principal ideal of D/bD; so P/bD =
√

(b, c)/bD

for some c ∈ P by Proposition 2.2. Thus P =
√

(b, c).

(8) ⇒ (6) Let 0 6= a ∈ D. Then dim(D/aD) = 0. Note that each
prime ideal of D/aD is of the form P/aD for some prime ideal P of D
containing a. Hence every prime ideal of D/aD is the radical of a finitely
generated ideal, and thus D/aD satisfies (#) by Proposition 2.2.

(8) ⇔ (9) This follows directly from the definition of weakly Krull
domains and Lemma 2.1.

We next give two examples which show that the reverse implications
of Theorem 2.3 do not hold.

Example 2.4. (1) Let Z be the ring of integers. Then dim(Z) = 1
and every prime ideal of Z is a principal ideal. However, Z is not semi-
quasilocal.

(2) Let D be a Dedekind domain such that the divisor class group
Cl(D) of D is torsion-free (see [4, Theorems 45.8 and 45.9, Example
45.10] for the existence of such a Dedekind domain). Then, since D is
an one-dimensional Noetherian domain, D satisfies the condition (8) of
Theorem 2.3. However, since Cl(D) is torsion-free, D has a prime ideal
P such that P n is not principal for all positive integers n. Note that if
P =

√
aD, then aD = P k for some positive integer k [9, Theorem 97],

a contradiction. Therefore, P is not the radical of a principal ideal, and
hence D does not satisfy (B).
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3. The conditions (A′), (B′) and (C′)

In this section, we study the t-operation analogs of the properties
(A), (B) and (C). For this we first review some properties of the t-
operation on an integral domain. Let D be an integral domain with
quotient field K, and let I be a nonzero fractional ideal of D. Then
I−1 = {x ∈ K|xI ⊆ D}, Iv = (I−1)−1, and It = ∪{Jv|J ⊆ I is a nonzero
finitely generated ideal of D}. The I is called a t-ideal if I = It, while a
t-ideal I is called a maximal t-ideal if I is maximal among proper integral
t-ideals of D. Let t-Max(D) be the set of maximal t-ideals of D. It is well
known that t-Max(D) 6= ∅ when D is not a field; every maximal t-ideal
is a prime ideal; every integral t-ideal is contained in a maximal t-ideal;
every prime ideal minimal over a t-ideal is a t-ideal (in particular, height-
one prime ideals are t-ideals); and D = ∩P∈t-Max(D)DP . We say that D
has t-dimension one, denoted by t-dim(D) = 1, if every prime t-ideal
of D is a maximal t-ideal, i.e., t-Max(D) = X1(D); so if t-dim(D) = 1,
then D = ∩P∈X1(D)DP .

Proposition 3.1. (1) D satisfies (A′) if and only if every prime
t-ideal of D is the radical of a principal ideal.

(2) D satisfies (A) if and only if D satisfies (A′) and every nonzero
prime ideal of D is a t-ideal.

Proof. (1) Suppose that there exists a prime t-ideal P of D such that

P 6= √
aD for all a ∈ P . Then for each aα ∈ P ,

√
aαD ( P , and hence

there is a prime ideal Pα minimal over aαD (hence Pα is a prime t-ideal)
such that P * Pα. So P ⊆ ∪aα∈P Pα but P * Pα for all α. Thus if D
satisfies (A′), then every prime t-ideal of D is the radical of a principal
ideal. The converse is clear (or see the proof of [10, Theorem]).

(2) (⇒) Assume that D satisfies (A). Clearly, D satisfies (A′) and
by [11, Theorem], each nonzero prime ideal P of D is the radical of a
principal ideal. In particular, P is minimal over a principal ideal, and
thus P is a t-ideal. (⇐) By (1), every prime t-ideal of D is the radical of
a principal ideal; so every prime ideal of D is the radical of a principal
ideal, and thus D satisfies (A) [11, Theorem].

We next give the t-operation analog of Theorem 2.3, which also gives
new characterizations of weakly Krull domains.

Theorem 3.2. Consider the following statements for an integral do-
main D.
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(1) D is a semi-quasilocal domain of dim(D) = 1.
(2) D satisfies (B′).
(3) t-dim(D) = 1 and every prime t-ideal is the radical of a principal

ideal.
(4) D is a GWFD.
(5) D is a weakly Krull domain.
(6) t-dim(D) = 1 and every prime t-ideal is the radical of a two gen-

erated ideal.
(7) t-dim(D) = 1 and every prime t-ideal is the radical of a finitely

generated ideal.
(8) t-dim(D) = 1 and D satisfies (C′).
(9) t-dim(D) = 1 and for a prime t-ideal P of D and a nonempty

collection {Pα|α ∈ A} of prime t-ideals of D with ∩α∈APα 6= (0),
∩α∈APα ⊆ P implies Pα ⊆ P for some α ∈ A.

Then (1) ⇒ (2) ⇔ (3) ⇔ (4) ⇒ (5) ⇔ (6) ⇔ (7) ⇔ (8) ⇔ (9).

Proof. (1) ⇒ (2) This follows directly from [9, Theorem 81].
(2) ⇔ (3) It is clear that if D satisfies (B′), then t-dim(D) = 1. Thus

the result is an immediate consequence of Proposition 3.1(1) since (A′)
and (B′) are the same conditions for integral domains with t-dimension
one.

(3) ⇔ (4) This is the (1) ⇔ (3) of [2, Theorem 2.2].
(4) ⇒ (5) [2, Corollary 2.3].
(5) ⇔ (6) [2, Theorem 2.6].
(6) ⇒ (7) Clear.
(7) ⇒ (8) Let P be a prime t-ideal of D, and let {Iα} be a set of

t-ideals of D such that (0) 6= ∩αIα ⊆ P . Let I = ∩αIα. Then I is a
t-ideal [4, Proposition 32.2], and hence the number of prime t-ideals of
D containing I is finite, say P1, . . . , Pn, by (7) and Lemma 2.1.

Let S = D\∪n
i=1Pi. Then dim(DS/IDS) = 0 and {P1DS/IDS, . . . , PnDS/IDS}

is the set of maximal ideals of the factor ring DS/IDS. So DS/IDS sat-
isfies (#) by Proposition 2.2. Recall from [8, Proposition 2.8(3)] that

Iα = ∩P∈X1(D)IαDP = (∩n
i=1IαDPi

) ∩D = IαDS ∩D

since each Iα is a t-ideal of D, (DS)PiDS
= DPi

, and {P1DS, . . . , PnDS} is
the set of maximal ideals of DS. Hence (∩αIαDS)∩D = ∩α(IαDS∩D) =
∩αIα = I, and thus ∩αIαDS = IDS [4, Theorem 4.4(2)].

Clearly, ∩α(IαDS/IDS) = (∩αIαDS)/IDS; so ∩α(IαDS/IDS) = IDS/IDS ⊆
PDS/IDS. Since DS/IDS satisfies (#), we have IαDS/IDS ⊆ PDS/IDS
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for some α, and hence Iα = IαDS∩D ⊆ PDS ∩D = P . Thus D satisfies
(C′).

(8) ⇒ (9) Clear.
(9) ⇒ (5) If t-dim(D) = 1, then D = ∩P∈X1(D)DP . So it suffices

to show that the set S(a) = {P ∈ X1(D)|a ∈ P} is finite for each
0 6= a ∈ D. If P ∈ S(a), then, since each Q ∈ S(a) is a t-ideal of
D and 0 6= a ∈ ∩P 6=Q∈S(a)Q, we have ∩P 6=Q∈S(a)Q * P by (9). So we
can choose yp ∈ (∩P 6=Q∈S(a)Q) \ P . Obviously, ({a, yP |P ∈ S(a)}) * Q
for all Q ∈ X1(D) = t-Max(D), and hence ({a, yP |P ∈ S(a)})t = D.
Hence (a, yP1 , . . . , yPn)t = D for some P1, . . . , Pn ∈ S(a). If P ∈ S(a) \
{P1, . . . , Pn}, then yPi

∈ P , and hence D = (a, yP1 , . . . , yPn)t ⊆ Pt =
P ( D, a contradiction. Thus S(a) = {P1, . . . , Pn}.

Remark 3.3. (1) It is known that D is a weakly Krull domain if and

only if t-dim(D) = 1 and for each P ∈ X1(D), P =
√

(a, b) for some
a, b such that ((a, b)(a, b)−1)t = D [2, Theorem 2.6].

(2) Let V be a valuation domain of dim(V ) = 2, and let 0 6= P0 ( P
be the chain of prime ideals of V . Then V satisfies the second condition
of the (9) of Theorem 3.2, but V does not satisfy (C′).

Recall that D is a Prüfer v-multiplication domain (PvMD) if every
nonzero finitely generated ideal I of D is t-invertible, i.e., (II−1)t = D.
It is well known that D is a PvMD if and only if DP is a valuation domain
for all maximal t-ideals P of D [12, Theorem 5]. Also, recall that D is
a generalized Krull domain if (i) D = ∩P∈X1(D)DP , (ii) this intersection
has finite character, and (iii) DP is a rank one valuation domain for all
P ∈ X1(D). It is obvious that a generalized Krull domain is a weakly
Krull domain. Conversely, if D is a PvMD, then D is a generalized Krull
domain if and only if D is a weakly Krull domain.

Corollary 3.4. A PvMD D satisfies (C′) if and only if D is a gen-
eralized Krull domain.

Proof. As we noted in the above paragraph, a PvMD D is a weakly
Krull domain if and only if D is a generalized Krull domain; so by
Theorem 3.2, it suffices to show that if D satisfies (C′), then t-dim(D) =
1.

Let P be a prime t-ideal of D. If htP ≥ 2, then there is a prime
t-ideal P0 of D such that P0 ( P (we may assume that there is no prime
ideal properly between P0 and P [9, Theorem 11] since every nonzero
prime ideal of D contained in P is a t-ideal (cf. [8, Corollary 3.20])).
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Let a ∈ P such that
√

aDP = PDP , and let Ia = aDP ∩D. Then Ia is
a t-ideal of D [8, Lemma 3.17], P0 ( Ia, and ∩Ia = P0 (cf. [4, Theorem
17.3(d)]), a contradiction. Hence htP = 1, and thus t-dim(D) = 1.
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