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SPECTRUMS OF WEIGHTED LEFT REGULAR

ISOMETRIES OF A STRONGLY PERFORATED

SEMIGROUP

S.Y. Jang∗, B. J. Kim, T. W. Lee, Y. J. Kang and S.H. Jeon

Abstract. We compute spectrums of left regular isometries and
weighted left regular isometries of a strongly perforated semigroup
P = {0, 2, 3, 4, · · · }.

1. Introduction

Let H be a Hilbert space, A a bounded linear operator on H, and
C∗(A) denote the C∗-algebra generated by A and the identity operator
I. The operator A is called GCR, or postliminal, if C∗(A) is a GCR
C∗-algebra. Recall that a C∗-algebra A is called CCR, or liminal, if for
every irreducible representation π of A on a Hilbert space and for every
A ∈ A, π(A) is compact [ 4, 4.2.1]. A C∗-algebra A is called GCR if A
has an increasing family of closed two-sided ideals (Iρ)0≤ρ≤α satisfying
I0 = {0}, Iα = A, if ρ ≤ α is a limit ordinal, then Iρ is the uniform
closure of ∪{I ′ρ : ρ′ < ρ} and Iρ+1/Iρ is CCR [4, 4.3.4]. Equivalently,
A is GCR if every irreducible representation of A contains a nonzero
compact operator [16, 4.6.4]. It has been known that this is equivalent
to requiring that for every representation π on a Hilbert space, π(A)
generates a type I W ∗-algebra [16].

The basic examples of CCR algebras are commutative C∗-algebra,
the algebras Mn of n×n complex matrices, and the algebra K(H) of all
compact operators on a Hilbert space H. Also C∗-subalgebras of GCR
algebras are GCR [4, 4.3.5].
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An operator A on a Hilbert space H is called n-normal [14] if
∑

sgn(σ)Aσ(1)Aσ(2) · · ·Aσ(2n) = 0

where A1, A2, · · · , A2n are arbitrary elements of the C∗-algebra gener-
ated by A, and the summation is taken over all permutations σ of
(1, 2, · · · , 2n). It is clear that if A is n-normal, then every operator
in C∗(A) is also n-normal. Every n-normal operator A can be written
as the direct sum of {Ak}n

k=1 where each Ak is a k × k operator-valued
matrix whose entries belong to a commutative C∗-algebra [14]. Thus
n-normal operators are CCR, since every irreducible representation is of
dimension less than or equal to n. Let K(H) denote the ideal of com-
pact operators in B(H), and let φ denote the canonical homomorphism
for B(H) onto the Calkin algebra B(H)/K(H). We call an operator A
essentially n-normal if φ(A) is n-normal, or equivalent if

∑
sgn(σ)Aσ(1)Aσ(2) · · ·Aσ(2n) ∈ K(H)

where A1, A2, · · · , A2n are arbitrary elements of the C∗-algebra generated
by A. We remark that essentially n-normal operators are GCR since
C∗(A)/(C∗(A)∩K(H)) is an n-normal algebra and hence CCR. A large
class of essentially n-normal operators are those operators which can
be written as direct sum of k × k operator-valued matrices (k ≤ n)
with entries in a C∗-algebra Ak such that φ(Ak) is commutative. As
an important example we mention those n×n operator-valued matrices
whose entries are Toeplitz operators with continuous symbol [6].

Now fix a separable Hilbert space l2(N) and an orthonormal basis
{en}∞n=0 for l2(N). A bounded linear operator S on l2(N) is called a
weighted shift with weights {αn}∞n=1 ∈ l∞(N) if

S(en) = αn+1en+1

for n = 0, 1, 2, · · · . Since the weighted shift with weights {|αn|}∞n=1, we
assume that αn ≥ 0. When αn = 1 for all n, we obtain the unilat-
eral shift U defined by U(en) = en+1. Notice that U is a pure isom-
etry that is essentially normal hence GCR. In fact, it is known that
K(l2(N)) ⊂ C∗(U) and C∗(U)/K(l2(N)) is *-isomorphic to C(T), the
continuous functions on the unit circle T. If S is any weighted shift, then
S = UD where D is the diagonal operator, D = Diag(α1, α2, α3, · · · ),
defined by Den = αn+1en. Since we assume that αn ≥ 0, we have that
D = (S∗S)1/2 ∈ C∗(S), and that S = UD is the polar decomposition
of S if αn > 0 for all n. A weighted shift S with weights {αn}∞n=1 is
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called periodic if there exists an integer p such that αn = αn+p for all
n. In this case S is said to be periodic of period p. It is known that a
weighted shift with weights {αn} such that αn − βn → 0 as n → ∞ for
some periodic sequence {βn} is GCR.

In this paper we will study shifts on a Hilbert space l2(P ) when P =
{0, 2, 3, · · · }. Though the natural number semigroup N = {0, 1, 2, 3, · · · }
is a totally and well ordered semigroup, the semigroup P = {0, 2, 3, · · · }
is partially ordered semigroup and strongly perforated semigroup. That
is, the order structure of P is very different from N. Hence the shift on
l2(P ) acts differently from the shift on l2(N).

We define an isometric representation of a semigroup M and also the
left regular isometry Lx as a generalized shift on a Hilbert space for each
x ∈ M . We compute spectrums of left regular isometries and weighted
left regular isometries on l2(P ). And also we show that the operator
L3L∗2 can be perturbed as a GCR element for 2, 3 ∈ P .

2. Isometric representation

Let M denote a semigroup with unit e and let B be a unital C∗−algebra
with unit IB. We call a map W : M → B, x → Wx an isometric homo-
morphism if each Wx is an isometry and Wxy = WxWy for all x, y ∈ M
and We = 1B. If B = B(H) for a Hilbert space H, (H,W ) is called an
isometric representation of M .

If M is left cancellative , we can have a specific isometric representa-
tion. Let H be a non-zero Hilbert space and l2(M,H) denote the Hilbert
space of all norm-square summable maps f from M to H, i.e.,

l2(M,H) = {f | f : M → H, Σx∈M | f(x) |2< ∞}.
The norm and scalar product on l2(M,H) are given as follows;

‖ f ‖2 = Σx∈M | f(x) |2< ∞

< f, g >= Σx∈M < f(x), g(x) > .

For each x ∈ M , we define a map Lx on l2(M,H) by the equation ;

(Lxf)(z) =

{
f(y), if z = xy for some y ∈ M

0, if z /∈ xM.
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By the definition of adjoint operator (L∗xf)(z) = f(zx) for x, z ∈ M ,
we have

(L∗xLxf)(z) =

{
L∗xf(y), if z = xy for some y ∈ M

0, if z /∈ xM,

so L∗xLx is the identity operator on l2(M, H). And

(LxL∗xf)(z) = f(zx) =

{
Lxf(y), if z = xy for some y ∈ M

0, if z /∈ xM.

Thus LxL∗x is the orthogonal projection onto the subspace generated
by {z ∈ M | z ∈ xM}, so Lx is a non-unitary isometry on l2(M,H)
when x 6= e ∈ M .

Since Lx is an isometry and LxLy = Lxy for each x, y ∈ M , the map
L : M → B(l2(M,H)), x → Lx is an isometric representation. The map
L is called a left regular isometric representation.

If the Hilbert spaceH is the complex field C, then we have l2(M,H) =
l2(M). In this case we can see more explicitly how Lx acts for each
x ∈ M . Let {δx | x ∈ M} be the orthonormal basis of l2(M) defined by

δx(y) =

{
1, x = y

0, otherwise.

Lx acts like a shift and translates the elements of the orthonormal basis
of l2(M,H) as follows:

(Lx(δy))(z) =

{
δy(t), z = xt

0, otherwise
=

{
1, z = xy

0, otherwise.

Hence Lx(δy) = δxy for each x, y ∈ M . Clearly L∗xLx is the identity
because L∗xLx(δy) = L∗x(δxy) = δy for all y ∈ M . Furthermore, since

(LxL∗x(δy)) =

{
Lx(δy), y = xz

0, otherwise
=

{
δxz = δy, z = xy

0, otherwise,

LxL∗x is the projection onto the sub-Hilbert space generated by {y ∈ M |
y ∈ xM}.

If M = N, the semigroup of natural numbers, L1 is the unilateral shift
on l2(N) with respect to the orthonormal basis {δn | n ∈ N} because
L1(δn) = δn+1 for all n ∈ N. This is why the left regular isometry can
be called as a generalized shifts.
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Assume that x ∈ M is invertible in M . Then we have (Lxf)(z) =
f(x−1z) for x, z ∈ M , Lx is an unitary.

The C∗-algebra generated by {Lx | x ∈ M} is denoted by C∗
red(LM)

[7]. The C∗-algebras generated by isometries is one of the interesting
area of C∗-algebras [2, 3, 9,10,11,12, 13]

Let α = (αx)x∈M , and α ∈ l∞(M). Let Dα be the diagonal operator
acting as follows:

Dα(δx) = αxδx

for all x ∈ M . Let W α
x = LxDα be the weighted left regular isometry

for each x ∈ M

3. Left regular isometric representation of P = {0, 2, 3, · · · }

Let M be a countable discrete semigroup. We can give an order on
M as follows: if an element x in M is contained in yM for some element
y ∈ M , then x and y are comparable and we denote this by y ≤ x. This
relation makes M a pre-ordered semigroup.

If M is abelian, M can be equipped with the algebraic order y ≤ x
if and only if x = y + z for some z ∈ M . An element x ∈ M is called
positive if y ≤ y + x for all y ∈ M , and M is positive if all elements in
M are positive. If M has a zero element 0, then M is positive if and
only if 0 ≤ x for all x ∈ M.

A positive ordered abelian semigroup W is said to be almost unper-
forated if for all x, y ∈ M and all n,m ∈ M , with nx ≤ my and n > m,
one has x ≤ y. A partially ordered abelian group G with the positive
cone M is said to be almost unperforated if the statement that x ∈ G
and n ∈ N with nx, (n + 1)x ∈ M implies that x ∈ M . It is known
that G is almost unperforated if and only if the positive semigroup M is
almost unperforated for a partially ordered abelian group (G,M) [17].

If the condition that n ∈ N and x ∈ G with nx ∈ M implies that
x ∈ M , then the partially ordered abelian group (G,M) is weakly un-
perforated. Any weakly unperforated group is almost unperforated, but
the converse is not true. The negation of almost unperforated property
is strongly perforated.

The semigroup P = {0, 2, 3, 4, 5, 6, · · · } is strongly perforated. In [8]
we show that the reduced semigroup C∗-algebra C∗

red(P ) of the semi-
group P is isomorphic to the classical Toeplitz algebra and C∗

red(P ) is
not isomorphic to the semigroup C∗-algebra C∗(P ).
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Let A ∈ B(H) be any bounded linear operator on a Hilbert space
H. We write σ(A), σp(A), and σap(A) for the spectrum, point spectrum,
and approximate point spectrum of A.

Theorem 3.1. Let L2 be a left regular isometry on l2(P ) and L∗2 be
the adjoint operator of L2. Then we have the following results on the
spectrums:

1. σ(L2) = {λ ∈ C | |λ| ≤ 1};
2. σap(L2) = {λ ∈ C | |λ| = 1};
3. σp(L2) = ∅;
4. σ(L∗2) = σap(L∗2) = {λ ∈ C | |λ| ≤ 1};
5. σp(L∗2) = {λ ∈ C | |λ| < 1}.
Proof. We consider a non-zero element xλ = (xn)n∈P such that L2xλ =

λxλ. Then we have

L2(xλ) = (0, x0, 0, x2, x3, x4, · · · ) = (λx0, λx2, λx3, λx4 · · · ).
So we have 0 = λx0, x0 = λx2, 0 = λx3, · · · . If 0 6= λ, x0 = x2 = x3 =
· · · = 0. This contradicts to the fact xλ is non-zero vector. Since L2 is
isometry, KerL2 = {0}. Hence λ = 0 /∈ σp(L2). Therefore σp(L2) = ∅.

Next, we will show that σp(L∗2) = {λ ∈ C | |λ| < 1}. We assume
that |λ| < 1. We consider a non-zero element xλ = (xn) such that
L∗2xλ = λxλ. Then we have

L∗2(xλ) = (x2, x4, x5, x6, x7 · · · ) = (λx0, λx2, λx3, λx4, λx5 · · · ).
So we have x2 = λx0, x4 = λx2 = λ2x0, x5 = λx3, x6 = λx4 = λ3x0, x7 =
λx5 = λ2x3 · · · . Since |λ| < 1,

xλ = (xn) = (x0, λx0, x3, λ
2x0, λx3, λ

3x0, λ
2x3, · · · ) ∈ l2(P ).

Hence xλ = (xn) = (x0, λx0, x3, λ
2x0, λx3, λ

3x0, λ
2x3, · · · ) is an eigenvec-

tor of L∗2. So we have that σp(L∗2) = {λ ∈ C | |λ| < 1}.
Since {λ ∈ C | |λ| < 1} = σp(L∗2) ⊂ σap(L∗2) ⊂ σ(L∗2), ||L2|| = 1, and

both σap(L∗2) and σ(L∗2) are closed, σ(L∗2) = σap(L∗2) = {λ ∈ C | |λ| ≤ 1}.
And furthermore since σ(L∗2) = σ(L2)

∗ = {λ̄ | λ ∈ σ(L∗2)} , we have
σ(L2) = {λ ∈ C | |λ| ≤ 1}.

Assume that |λ| < 1.

||(L2 − λI)(x)|| ≥ ||L2(x)|| − |λ|||x|| ≥ (1− |λ|)||x|| > 0

for any x ∈ l2(P ). So if |λ| < 1, then λ /∈ σap(L2). Therefore σap(L2) =
{λ ∈ C | |λ| = 1}.



Spectrums of weighted left regular isometries 31

Corollary 3.2. Let L3 be a left regular isometry on l2(P ) and L∗3
be the adjoint operator of L3. Then we have the following results on the
spectrums:

1. σ(L3) = {λ ∈ C | |λ| ≤ 1};
2. σap(L3) = {λ ∈ C | |λ| = 1};
3. σp(L3) = ∅;
4. σ(L∗3) = σap(L∗3) = {λ ∈ C | |λ| ≤ 1};
5. σp(L∗3) = {λ ∈ C | |λ| < 1}.
Proof. First, we will show that σp(L∗3) = {λ ∈ C | |λ| < 1}. We

assume that |λ| < 1. We consider a non-zero elemenet xλ = (xn) such
that L∗3xλ = λxλ. Then we have

L∗3(xλ) = (x3, x5, x6, x7, x8, · · · ) = (λx0, λx2, λx3, λx4, λx5, · · · ).
So we have x3 = λx0, x5 = λx2, x6 = λ2x0, x7 = λx4, x8 = λx5 =
λ2x2 · · · . Since |λ| < 1, (x0, x2, λx0, x4, λx2, λ

2x0, λx4, λ
2x2, · · · ) ∈ l2(P ).

Hence xλ = (xn) = (x0, x2, λx0, x4, λx2, λ
2x0, λx4, λ

2x2, · · · ) is an eigen-
vector of L∗3. So we have that σp(L∗3) = {λ ∈ C | |λ| < 1}.

Since {λ ∈ C | |λ| < 1} = σp(L∗3) ⊂ σap(L∗3) ⊂ σ(L∗3), ||L2|| = 1, and
both σap(L∗3) and σ(L∗3) are closed, σ(L∗3) = σap(L∗3) = {λ ∈ C | |λ| ≤ 1}.
And furthermore since σ(L∗3) = σ(L3)

∗, we have σ(L3) = {λ ∈ C | |λ| ≤
1}.

We consider a non-zero elemenet xλ = (xn) such that L3xλ = λxλ.
Then we have

L3(xλ) = (0, 0, x0, 0, x2, x3, x4, · · · ) = (λx0, λx2, λx3, λx4 · · · ).
If 0 6= λ, x0 = x2 = x3 = · · · = 0. This contradicts to the fact xλ 6= 0.
Since kerL3 = {0}, 0 /∈ σp(L3) So, we have that σp(L3) = ∅. By the
similar computation of the proof of the Theorem 3.1 we will see that if
|λ| < 1, then λ /∈ σap(L2). Therefore σap(L2) = {λ ∈ C | |λ| = 1}.

Theorem 3.3. Suppose that 0 < |α0| ≤ |α1| ≤ |α2| ≤ · · · and
r = sup|αn| < ∞. Let Wα

2 = L2Mα be a weighted left regular isometry
on l2(P ) and Wα∗

2 be the adjoint operator of Wα
2 . Then we have the

following results on the spectrums:

1. σ(Wα
2 ) = {λ ∈ C | |λ| ≤ r};

2. σap(W
α
2 ) = {λ ∈ C | |λ| = r};

3. σp(W
α
2 ) = ∅;

4. σ(Wα∗
2 ) = σap(W

∗
2 ) = {λ ∈ C | |λ| ≤ r};

5. σp(W
α∗
2 ) = {λ ∈ C | |λ| < r}.
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Proof. First, we will show that σp(W
α
2
∗) = {λ ∈ C | |λ| < r}. We

assume that |λ| < r. We consider a non-zero elemenet xλ = (xn) such
that Wα

2
∗xλ = λxλ. Then we have

Wα
2 (xλ) = (α0x2, α2x4, α3x5, α4x6, · · · ) = (λx0, λx2, λx3, λx4 · · · ).

So

xλ = (x0,
λ

α0

x0, x3,
λ2

α0α2

x0,
λ

α3

x3,
λ3

α0α2α4

x0,
λ2

α3α5

x3, · · · ).

Since |λ| < r = supαn, we can see that xλ = (xn) ∈ l2(P ) . Hence
σp(W

α∗
2 ) = {λ ∈ C | |λ| < r}. Since {λ ∈ C | |λ| < r} = σp(W

α∗
2 ) ⊂

σap(W
α∗
2 ) ⊂ σ(W α∗

2 ), and both σap(W
α∗
2 ) and σ(Wα∗

2 ) are closed, σ(Wα∗
2 ) =

σap(W
α∗
2 ) = {λ ∈ C | |λ| ≤ r}. And furthermore since σ(W α∗

2 ) =
σ(W2)

∗, we have σ(Wα
2 ) = {λ ∈ C | |λ| ≤ r}.

Suppose that x = (x0, x1, x2, · · · ) ∈ l2(P ) and λ 6= 0. Assume that
W2x = λx. Then

(λx0, λx2, λx3, · · · ) = (0, α0x0, 0, 0, α2x2, α3x3 · · · ).
So 0 = λx0, x0 = λx2, · · · . Hence 0 = x0 = x2 = x3 = · · · . Therefore
λ /∈ σp(W

α
2 ). Since W α

2 is isometry, KerW α
2 = {0}. Hence λ = 0 /∈

σp(W
α
2 ). Hence σp(W

α
2 ) = ∅.

Suppose that |λ| < r. Then there exists a real number q such that
|λ| < q < r. Since r = sup|αn| < ∞, there exists a integer number n0

such that αn ≥ q for all n ≥ n0. Thus for any x ∈ l2(P )

||W α
2 (x)||

= |α0|2|x0|2 + |α2|2|x2|2 + · · ·+ |αn0|2|xn0|2 + |αn0+1|2|xn0+1|2 + · · ·
> |α0|2|x0|2 + |α2|2|x2|2 + · · ·+ |q|2|xn0|2 + |q|2|xn0+1|2 + · · · .

Hence we can say that ||Wα
2 (x)|| ≥ q||x|| essentially. Thus ||(Wα

2 −
λI)(xn)|| dose not converge to 0 for any sequence {xn} with ||xn|| = 1.
So if |λ| < r, then λ /∈ σap(W

α
2 ). Therefore σap(W

α
2 ) = {λ ∈ C | |λ| =

r}.
Corollary 3.4. Suppose that α = (α0, α2, · · · ) and 0 < |α0| ≤

|α2| ≤ |α3| ≤ · · · , and r = sup|αn| < ∞. Let W α
3 = L3Mα be a

weighted left regular isometry on l2(P ) and W α∗
3 be the adjoint operator

of Wα
3 on l2(P ). Then we have the following results on the spectrums:

1. σ(Wα
3 ) = {λ ∈ C | |λ| ≤ r};

2. σap(W
α
3 ) = {λ ∈ C | |λ| = r};
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3. σp(W
α
3 ) = ∅;

4. σ(Wα∗
3 ) = σap(W

α∗
3 ) = {λ ∈ C | |λ| ≤ r};

5. σp(W
α∗
3 ) = {λ ∈ C | |λ| < r}.

Proof. We assume that |λ| < r. We consider a non-zero elemenet
xλ = (xn) such that Wα∗

3 xλ = λxλ. Then we have

W α
3 (xλ) = (α0x3, α2x5, α3x6, α4x7, · · · ) = (λx0, λx2, λx3, λx4 · · · }.

So we get λx0 = α0x3, λx2 = α2x5, λx3 = α3x6, λx4 = α4x7 · · · and

xλ

= (x0, x2,
λ

α0

x0,
λ

α2

x2,
λ2

α0α3

x0,
λ

α4

x4,
λ2

α2α5

x2,
λ3

α0α3α6

x0,
λ2

α4α7

x4,

λ3

α2α5α8

x2, · · · ).

Since |λ| < r = sup αn, we can see that xλ = (xn) ∈ l2(P ) . Hence
σp(W

α∗
3 ) = {λ ∈ C | |λ| < r}. Since {λ ∈ C | |λ| < r} = σp(W

α∗
3 ) ⊂

σap(W
α∗
3 ) ⊂ σ(Wα∗

3 ) and σap(W
α∗
3 ) , σ(W α∗

3 ) are closed, σ(Wα∗
3 ) =

σap(W
α∗
3 ) = {λ ∈ C | |λ| ≤ r}. And furthermore since σ(W α∗

3 ) =
σ(W α

3 )∗, we have σ(Wα
3 ) = {λ ∈ C | |λ| ≤ r}.

Suppose that x = (x0, x2, x3, · · · ) ∈ l2(P ) and λ 6= 0. Assume that
W α

3 x = λx. Then

(λx0, λx2, λx3, · · · ) = (0, 0, α0x0, 0, α2x2, α3x3 · · · ).
So 0 = λx0, 0 = λx2, · · · . Hence 0 = x0 = x2 = x3 = · · · . Since xλ

is not zero-vector, λ /∈ σp(W
α
3 ). Furthermore the fact KerW α

3 = {0}
implies that λ = 0 /∈ σp(W

α
3 ). Hence σp(W

α
3 ) = ∅.

Suppose that |λ| < r. Then there exists a real number q such that
|λ| < q < r. Since r = sup|αn| < ∞, there exists a integer number n0

such that αn ≥ q for all n ≥ n0. Thus for any x ∈ l2(P )

||W α
2 (x)||

= |α0|2|x0|2 + |α2|2|x2|2 + · · ·+ |αn0|2|xn0|2 + |αn0+1|2|xn0+1|2 + · · ·
> |α0|2|x0|2 + |α2|2|x2|2 + · · ·+ |q|2|xn0|2 + |q|2|xn0+1|2 + · · · .

Hence we can say that ||Wα
3 (x)|| ≥ q||x|| essentially. Thus ||(Wα

3 −
λI)(xn)|| does not converge to 0 for any sequence {xn} with ||xn|| = 1.
So if |λ| < r, then λ /∈ σap(W

α
3 ). Therefore σap(W

α
3 ) = {λ ∈ C | |λ| =

r}.



34 S.Y. Jang, B.J. Kim, T.W. Lee, Y.J Kang and S.H. Jeon

The semigroup P = {0, 2, 3, · · · } is generated by 2 and 3 . Next
we are going to consider a C∗-algebra C∗(LP ), which is generated by
{Lx | x ∈ P}. Then the C∗-algebra C∗(LP ) is generated by L2 and L3

because every element in P is generated by 2 and 3. For any n,m ∈ P ,

Ln(δm) = δn+m

where {δm | m ∈ P} is the canonical orthonormal basis of l2(M) defined
by

δm(l) =

{
1, if m = l,

0, otherwise,

and

L∗n(δm) =

{
δm−n, if m ∈ P + n,

0, otherwise.

If we consider an operator L3L∗2, then we have

L3L∗2(δm) =

{
δm+1, if m ∈ P + 2,

0, otherwise.

Hence L3L∗2(δ0) = 0 and L3L∗2(δm) = δm+1 for all m ∈ P − {0}.
That is, L3L∗2 acts like a unilateral shift on the Hilbert l2(P ) except δ0

with respect to the canonical basis {δm | m ∈ P}. To exclude the gap
of δ0 we consider a rank one operator K0 defined by

K0(δn) =

{
δ2, if n = 0,

0, otherwise.

Then (L3L∗2 + K0)(δm) = δm+1 for all m ∈ P . Put S = L3L∗2 + K0.
Then S acts like a unilateral shift on the Hilbert l2(P ) with respect to
the canonical basis {δm | m ∈ P}.

And L2L∗2 is an orthogonal projection on the sub-Hilbert generated by
{δ2, δ4, δ5 · · · } , so I−L2L∗2 is the orthogonal projection on the subspace
generated by {δ0, δ2}. We denote LnL∗n and I − LnL∗n by Pn and Qn,
respectively. Since by [ 8 ] the C∗-algebra C∗(L2,L3) acts irreducibly
on l2(P ) and Q2 is the compact operator of rank two, the compact
operator algebra K(l2(H)) is contained in the C∗-algebra C∗(L3,L2)
Hence K0 ∈ C∗(L3,L2) and S ∈ C∗(L3,L2). And we can see that L2

and L3 can be made by L3L∗2 and some compact operators[8].

Theorem 3.5. [8] The C∗-algebra C∗(LP ) is generated by S.
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Since Coburn proved [1] that the C∗-algebra generated by single non-
unitary isometry is isomorphic to the Toeplitz algebra, the C∗-algebra
C∗(L3,L2) = C∗(LP ) is isomorphic to the Toeplitz algebra.

Theorem 3.6. The operator S in B(l2(P )) is GCR.

Proof. Since C∗(S) = C∗(L3,L∗2) = C∗(LP ) is isomorphic to the
Toeplitz algebra, S is GCR.
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