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SPECTRUMS OF WEIGHTED LEFT REGULAR
ISOMETRIES OF A STRONGLY PERFORATED
SEMIGROUP

S.Y. Janc*, B. J. Kim, T. W. LEE, Y. J. KANG AND S.H. JEON

ABSTRACT. We compute spectrums of left regular isometries and
weighted left regular isometries of a strongly perforated semigroup
P=1{0,2,3,4,---}.

1. Introduction

Let ‘H be a Hilbert space, A a bounded linear operator on H, and
C*(A) denote the C*-algebra generated by A and the identity operator
I. The operator A is called GCR, or postliminal, if C*(A) is a GCR
C*-algebra. Recall that a C*-algebra A is called CCR, or liminal, if for
every irreducible representation 7 of A on a Hilbert space and for every
Ae A, m(A) is compact [ 4, 4.2.1]. A C*-algebra A is called GCR if A
has an increasing family of closed two-sided ideals (Z,)o<,<o satisfying
Ty = {0}, Z, = A, if p < « is a limit ordinal, then Z, is the uniform
closure of U{Z}, : p < p} and Z,,,1/Z, is CCR [4, 4.3.4]. Equivalently,
A is GCR if every irreducible representation of A contains a nonzero
compact operator [16, 4.6.4]. It has been known that this is equivalent
to requiring that for every representation 7 on a Hilbert space, m(.A)
generates a type I W*-algebra [16].

The basic examples of CCR algebras are commutative C*-algebra,
the algebras M,, of n x n complex matrices, and the algebra K(H) of all
compact operators on a Hilbert space H. Also C*-subalgebras of GCR
algebras are GCR [4, 4.3.5].
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An operator A on a Hilbert space H is called n-normal [14] if
Z Sgn(a>AU(l)Aa(2) te AU(Qn) =0

where Aj, Ag, -+, Ag, are arbitrary elements of the C*-algebra gener-
ated by A, and the summation is taken over all permutations o of
(1,2,---,2n). It is clear that if A is n-normal, then every operator

in C*(A) is also n-normal. Every n-normal operator A can be written
as the direct sum of {A;}7_, where each Ay is a k x k operator-valued
matrix whose entries belong to a commutative C*-algebra [14]. Thus
n-normal operators are CCR, since every irreducible representation is of
dimension less than or equal to n. Let I(H) denote the ideal of com-
pact operators in B(H), and let ¢ denote the canonical homomorphism
for B(H) onto the Calkin algebra B(H)/IC(H). We call an operator A
essentially n-normal if ¢(A) is n-normal, or equivalent if

> 5gn(0) Ast) Asz) -+ - Aaian) € K(H)

where Ay, Ag, - -+, Ay, are arbitrary elements of the C*-algebra generated
by A. We remark that essentially n-normal operators are GCR since
C*(A)/(C*(A)NK(H)) is an n-normal algebra and hence CCR. A large
class of essentially m-normal operators are those operators which can
be written as direct sum of k x k operator-valued matrices (k < n)
with entries in a C*-algebra Ay such that ¢(Ag) is commutative. As
an important example we mention those n x n operator-valued matrices
whose entries are Toeplitz operators with continuous symbol [6].

Now fix a separable Hilbert space {?(N) and an orthonormal basis
{en}52, for [*(N). A bounded linear operator S on [*(N) is called a
weighted shift with weights {a,}°2; € [®°(N) if

S(en) = Op41€n+1

for n =0,1,2,---. Since the weighted shift with weights {|ca,|}5,, we
assume that a,, > 0. When «, = 1 for all n, we obtain the unilat-
eral shift U defined by U(e,) = e,41. Notice that U is a pure isom-
etry that is essentially normal hence GCR. In fact, it is known that
K(*(N)) ¢ C*(U) and C*(U)/K(I*(N)) is *-isomorphic to C(T), the
continuous functions on the unit circle T. If S is any weighted shift, then
S = UD where D is the diagonal operator, D = Diag(ay, g, g, -+ ),
defined by De, = a,1€,. Since we assume that a,, > 0, we have that
D = (5§*S)Y/? € C*(S), and that S = UD is the polar decomposition
of S if a, > 0 for all n. A weighted shift S with weights {a,}52, is
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called periodic if there exists an integer p such that «, = a4, for all
n. In this case S is said to be periodic of period p. It is known that a
weighted shift with weights {a,,} such that a,, — 3, — 0 as n — oo for
some periodic sequence {f3,} is GCR.

In this paper we will study shifts on a Hilbert space [>(P) when P =
{0,2,3,---}. Though the natural number semigroup N = {0,1,2,3,---}
is a totally and well ordered semigroup, the semigroup P = {0,2,3,---}
is partially ordered semigroup and strongly perforated semigroup. That
is, the order structure of P is very different from N. Hence the shift on
[?(P) acts differently from the shift on /*(N).

We define an isometric representation of a semigroup M and also the
left regular isometry £, as a generalized shift on a Hilbert space for each
x € M. We compute spectrums of left regular isometries and weighted
left regular isometries on [?(P). And also we show that the operator
L3 L5 can be perturbed as a GCR element for 2,3 € P.

2. Isometric representation

Let M denote a semigroup with unit e and let B be a unital C*—algebra
with unit Iz. We call amap W : M — B, x — W, an isometric homo-
morphism if each W, is an isometry and W, = W, W, for all z,y € M
and W, = 1g. If B = B(H) for a Hilbert space ‘H, (H,W) is called an
isometric representation of M.

If M is left cancellative , we can have a specific isometric representa-
tion. Let H be a non-zero Hilbert space and (?(M,H) denote the Hilbert
space of all norm-square summable maps f from M to H, i.e.,

PIMH)={f | [: M —H, Zeen | f(2) *< o0}
The norm and scalar product on [2(M, H) are given as follows;

| f 1P = Seem | flz) P< o0

< f?g >= ExGM < f(x),g(x) >
For each z € M, we define a map £, on [*(M,H) by the equation ;

fly), if z=wy for some y € M

(£a1)(z) = {0 if > ¢ =M.
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By the definition of adjoint operator (L% f)(z) = f(zx) for z,z € M,
we have

L:f(y), if z=xy for some y € M
LL, =< *
(£2L.)(2) {07 S

so L*L, is the identity operator on [*(M, H). And

L.f(y), if z=azy for some y € M

(LLf)(2) = flzx) = {0 if z ¢ xM.

Thus £, L is the orthogonal projection onto the subspace generated
by {z € M | z € M}, so L, is a non-unitary isometry on I*(M, H)
when x # e € M.

Since £, is an isometry and £,L, = L,, for each x,y € M, the map
L: M — B(I*(M,H)), x — L, is an isometric representation. The map
L is called a left reqular isometric representation.

If the Hilbert space H is the complex field C, then we have [*(M, H) =
[>(M). In this case we can see more explicitly how £, acts for each
x € M. Let {6, | x € M} be the orthonormal basis of [*(M) defined by

1, 2=y
Oy =

otherwise.

L. acts like a shift and translates the elements of the orthonormal basis
of (M, H) as follows:

<.cx<5y>><z>={5y“>’ oo :{1’ o

0, otherwise 0, otherwise.

Hence £,(d,) = 04y for each z,y € M. Clearly £:L, is the identity
because L:L,(6,) = L:(64y) = 6, for all y € M. Furthermore, since

. L.(0,), y=uxz Opr =0y, 2 =212y
<cxcx<6y>>={ (%) :{ y

0, otherwise 0, otherwise,

L, L} is the projection onto the sub-Hilbert space generated by {y € M |
y € xM}.

If M = N, the semigroup of natural numbers, £; is the unilateral shift
on [*(N) with respect to the orthonormal basis {4, | n € N} because
L1(0,) = 0p41 for all n € N. This is why the left regular isometry can
be called as a generalized shifts.
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Assume that € M is invertible in M. Then we have (L£,f)(z) =
f(x™'2) for z,2 € M, L, is an unitary.

The C*-algebra generated by {L, | © € M} is denoted by C*. (L)
[7]. The C*-algebras generated by isometries is one of the interesting
area of C*-algebras [2, 3, 9,10,11,12, 13|

Let o = (ap)zenr, and a € [°(M). Let D, be the diagonal operator
acting as follows:

D, (0;) = a0,
for all z € M. Let W = L,.D, be the weighted left reqular isometry
for each x € M

3. Left regular isometric representation of P = {0,2,3,---}

Let M be a countable discrete semigroup. We can give an order on
M as follows: if an element x in M is contained in yM for some element
y € M, then x and y are comparable and we denote this by y < z. This
relation makes M a pre-ordered semigroup.

If M is abelian, M can be equipped with the algebraic order y < z
if and only if x = y + 2z for some z € M. An element z € M is called
positive if y <y + x for all y € M, and M is positive if all elements in
M are positive. If M has a zero element 0, then M is positive if and
only if 0 < zx for all z € M.

A positive ordered abelian semigroup W is said to be almost unper-
forated if for all x,y € M and all n,m € M, with nx < my and n > m,
one has x < y. A partially ordered abelian group G with the positive
cone M is said to be almost unperforated if the statement that xr € G
and n € N with nz, (n + 1)z € M implies that x € M. It is known
that G is almost unperforated if and only if the positive semigroup M is
almost unperforated for a partially ordered abelian group (G, M) [17].

If the condition that n € N and x € G with nx € M implies that
x € M, then the partially ordered abelian group (G, M) is weakly un-
perforated. Any weakly unperforated group is almost unperforated, but
the converse is not true. The negation of almost unperforated property
is strongly perforated.

The semigroup P = {0,2,3,4,5,6,---} is strongly perforated. In [§]
we show that the reduced semigroup C*-algebra C},,(P) of the semi-
group P is isomorphic to the classical Toeplitz algebra and C?,,(P) is
not isomorphic to the semigroup C*-algebra C*(P).
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Let A € B(H) be any bounded linear operator on a Hilbert space
H. We write 0(A), 0,(A), and 0,,(A) for the spectrum, point spectrum,
and approximate point spectrum of A.

THEOREM 3.1. Let Ly be a left regular isometry on [*(P) and L% be
the adjoint operator of Ly. Then we have the following results on the
spectrums:

L.o(Ly) ={ e C||N <1}

Oap(L2) = {A € C|[A =1}

op(Ls) = 0;

0(L3) = 0ap(L3) ={A € C| A <1}
ap,(L5) ={Ae C| |\ < 1}.

G WD

Proof. We consider a non-zero element x, = (x,,),ep such that Lox) =
Axy. Then we have

52(X)\) = (O,.ZU07 07 Lo, T3, T4, ) = (AZL'(), Ax?a )\I'g, )\.ZU4 e )

So we have 0 = Axg, ©9g = Axg, 0 = Axwg,---. f 0 # N\, 29 =29 = 23 =
-+ = 0. This contradicts to the fact x, is non-zero vector. Since L, is
isometry, KerLs = {0}. Hence A =0 ¢ 0,(L3). Therefore 0,(Ls) = 0.

Next, we will show that 0,(L;) = {A € C | |\] < 1}. We assume
that |A\| < 1. We consider a non-zero element x, = (x,) such that
Lix, = Ax). Then we have

‘C;(Xz\) = (an T4, Ts5,Te, L7 " * ) = ()\x(]v )\x27 )\(’Eg, )\.]3'4, )\%5 T )

So we have x5 = A\xg, T4 = Ay = N2, 5 = \x3, 6 = A\xq = Nag, 27 =
A5 = A3 -+, Since |\ < 1,

X\ = () = (w0, Ao, T3, N, Axs, N2xo, N3, - -+ ) € I*(P).

Hence x, = (z,,) = (o, Ao, T3, \2T0, AT3, N>, A>3, - - ) is an eigenvec-
tor of £3. So we have that ¢,(L5) = {A € C ||| < 1}.

Since {A € C| |\ < 1} = 0,(L}) C 0ap(L5) C o(L35), ||Ls]] =1, and
both 0,,(L3) and o(L}) are closed, o(L}) = 04,(L3) = {A € C | |A] < 1}.
And furthermore since (L) = o(Ly)* = {N | A € o(L£3)} , we have
o(Ly) ={A e C||A <1}

Assume that |A| < 1.

(L2 = AD G| = L2001 = [Ax][ = (1= [ADIx]] > 0

for any x € I2(P). So if [A\] < 1, then A & 04,(Ls). Therefore o,,(L2) =
{AeC ||\ =1} O
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COROLLARY 3.2. Let L3 be a left regular isometry on [*(P) and L}
be the adjoint operator of L3. Then we have the following results on the
spectrums:

L.o(Ls) ={AeC||N <1}

Gup(Ls) = {A € T\ = 1};

op(L3) = 0;

0(L3) = 0ap(L3) = {A € C| A <1}
gp(L5) ={Ae C| |\ <1}

Proof. First, we will show that 0,(L£5) = {A € C | |\| < 1}. We
assume that |[A\| < 1. We consider a non-zero elemenet x, = (z,) such
that £ix) = Ax,. Then we have

Al

L5(xy) = (z3, T35, T6, T7, s, - - - ) = (ATo, AT, AT3, ATy, AT5, - -+ ).

So we have 73 = A\xg, T5 = A\Ta, Tg = N2, T7 = ATy, Tg = \T5 =
A2z -+, Since || < 1, (wg, 22, ATo, Ty, A\T2, N2xg, ATy, N2To, -+ - ) € [*(P).
Hence xy = (z,,) = (w0, T2, \To, T4, \T2, N>To, AT, N2x9, -+ ) is an eigen-
vector of L£}. So we have that 0,(L5) ={A € C | |\| < 1}.

Since {A € C | |\ < 1} = 0,(LE) C 0ap(LE) C (L), ||Lo]] =1, and
both 0,,(L3) and o(L3) are closed, 0(L5) = 04,(L5) ={A € C | [N\ < 1}.
And furthermore since o(L%) = o(L3)*, we have o(L3) ={A € C| |\ <
1}.

We consider a non-zero elemenet x, = (x,) such that L3x), = Ax,.
Then we have

£3(X)\> = (07 07 Zo, OJ Lo, XT3, T4, """ ) = ()\.fo’ >\fL’2, /\Ig, )\I’4 e )
If 0 # N\, 29 = 19 = 23 = --- = 0. This contradicts to the fact x, # 0.
Since kerLs = {0}, 0 ¢ 0,(L3) So, we have that 0,(L3) = (). By the

similar computation of the proof of the Theorem 3.1 we will see that if
|A| <1, then A ¢ 04,(L2). Therefore 0,,(Ly) ={A € C| || =1}. O

THEOREM 3.3. Suppose that 0 < |ag| < || < Jao| < -+ and
r = suplay,| < co. Let Wit = L3M,, be a weighted left regular isometry
on I?(P) and W§" be the adjoint operator of W§'. Then we have the
following results on the spectrums:

L o(Wg)={XAeC||N<r};

2. 0ppy(W3') ={AEC|[N =71}

3. O-P(WQOC) =0;

4. o(W3) = 0,(W5) ={A € C[ [N <r};
5.

op(Ws") ={A e C[[A <r}.
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Proof. First, we will show that o,(W$*) = {A € C | |A\] < r}. We
assume that |[A\| < r. We consider a non-zero elemenet x, = (z,,) such
that W§*x, = Ax,. Then we have

WQQ(X/\) = (0403327042%,063355,0641767 e ) = ()\%’07 AT, ATz, ATy~ -+ )

So
A \? A A3 \?

X\ = (5(307 —X0,x3, — Lo, T3, Lo, T3, )
&%) [67i]8%) a3 QpOig0ly Q305

Since |\ < r = supa,, we can see that x, = (z,) € [*(P) . Hence
o,(We )y ={N e C ||\ <r}. Since {\ € C| |\ <71} =0,(Wg) C
0ap(WE™) C (W), and both o,, (W5 ) and (W) are closed, o(W3'") =
oap(Ws") = {X € C | |A\] < r}. And furthermore since o(W5") =
o(Wy)*, we have o(W5) ={A € C| |\ < r}.

Suppose that x = (zg, 1,72, +) € [*(P) and X\ # 0. Assume that
Wox = Ax. Then

(Al’o, )\1’2, )\.Tg, e ) = (07 QpZo, Oa 07 QoT9, N3T3 * -+ )
So 0 = Axg, xg = Axg, ---. Hence 0 = xg = 29 = x3 = ---. Therefore
A & o,(Ws'). Since W3 is isometry, KerWs = {0}. Hence A\ = 0 ¢
o,(Wg). Hence o,(W3) = 0.
Suppose that |[A\| < r. Then there exists a real number ¢ such that

|A| < ¢ < r. Since r = sup|a,| < 0o, there exists a integer number ny
such that a,, > ¢ for all n > ng. Thus for any x € I*(P)

W3 ()]
= |ao|?|wo|® + ozl |z2? + - - + |ng |2 Tno|* + [ng 1 |*[Tngsa|* + - - -
> |040|2’5l’50|2 + ’&2|2’5L’2|2 4+ 4 ]q|2!:cn0|2 + ’(I|2‘$n0+1’2 R

Hence we can say that ||[WW5(x)|| > q||x]|| essentially. Thus ||(Wg"
Al)(x,)|| dose not converge to 0 for any sequence {x,} with ||x,|| =
So if |A| < r, then X ¢ 0,,(W3'). Therefore o,,(Ws') = {\ € C| ||
r}.

o=

COROLLARY 3.4. Suppose that a = (ag,as,---) and 0 < |ag] <
lag] < |ag] < -+, and r = sup|a,| < oco. Let W§ = L3M, be a
weighted left regular isometry on [?(P) and W~ be the adjoint operator
of W& on [?(P). Then we have the following results on the spectrums:

Lo(Wg)={AeC||N<r};

2. op(W5') = {A € Cl[A[ =7}
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3. op(W5') = 0;

4. o(W§' ) =0,(Ws ) ={A e C||A <r};

5. 0,(Wg ) ={AeC||A <r}.

Proof. We assume that |A| < r. We consider a non-zero elemenet
x) = (z,,) such that W§ xy = Ax,. Then we have

W;?(X,\) = (06096’37 QaTs, O3Tg, Oyl7, " - ) - ()\9507 AT, ATz, ATy - -+ }

So we get A\xg = a3, ATy = qaTs, A\Ts = Q3%g, ATy = a7 -+ - and
X\
A A A2 A A2 A3 22
- ('TO)J;Q; —Xo, — T2, XTo, — Ty, T, Zo, Ly,
(%] &%) Qoai3 Oy Qo0ls Qpl3llg 07167
)\3
Ty, - )
(6510748 7]

Since |A] < r = sup a,,, we can see that x5 = (z,) € [*(P) . Hence
o,(We )y ={N e C ||\ <r}. Since {\ € C ||\ <71} =0,(W§) C
oapy(WE) C o(W§) and o,,(WS) , o(W§") are closed, o(Wg") =
(W) = {X € C | |A\] < r}. And furthermore since o(W5") =
o(Ws)*, we have o(W§) ={A € C| |\ < r}.

Suppose that x = (zg, T, 73, -) € [*(P) and X\ # 0. Assume that
Wix = Ax. Then

()\SU(], )\372, )\%3, e ) - (07 OJ QoTy, 07 QoXo, 3T3 * -+ )

So 0 = Axg, 0 = Axo, ---. Hence 0 = g = 29 = 23 = ---. Since X,
is not zero-vector, A\ ¢ o,(Wg). Furthermore the fact KerWs = {0}
implies that A = 0 ¢ o,(W3"). Hence o,(W$) = 0.

Suppose that |[A| < r. Then there exists a real number ¢ such that
|IA| < ¢ < r. Since r = sup|a,| < oo, there exists a integer number ng
such that a,, > ¢ for all n > ng. Thus for any x € [*(P)

W5 ()]
= lawo|*|ao]” + Jaaf*[aa]” + - + [ang [*n | + Qg1 [*[Zng | + -+
> ool ?|zof* + |aal?|w2f* + - + |aP|2no|* + laP|zngsa [+ -+ .
Hence we can say that ||[Ws(x)|| > ¢||x]|| essentially. Thus ||(Wg —
M) (x,,)|| does not converge to 0 for any sequence {x,} with ||x,|| = 1.

So if |A| < r, then X\ ¢ 0,,(W3'). Therefore o,,(Ws) = {A € C | |\ =
r}. O
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The semigroup P = {0,2,3,---} is generated by 2 and 3 . Next
we are going to consider a C*-algebra C*(Lp), which is generated by
{L, | x € P}. Then the C*-algebra C*(Lp) is generated by Lo and L;
because every element in P is generated by 2 and 3. For any n,m € P,

where {d,, | m € P} is the canonical orthonormal basis of I*(M) defined
by
ifm=1,

Sl) = 4 ,
0, otherwise,

and

£ () = Om—n, ifmeéeP+n,
0, otherwise.

If we consider an operator L£3£35, then we have

0, otherwise.

. Omt1, ifmeP+2
L3L*5(8,,) = { !

Hence L£3£%5(09) = 0 and L3L£*5(6,,) = Oy for all m € P — {0}.
That is, £3L£*, acts like a unilateral shift on the Hilbert [?(P) except &y
with respect to the canonical basis {d,, | m € P}. To exclude the gap
of §y we consider a rank one operator K, defined by

Ko(5,) = {52, if n =20,

0, otherwise.
Then (L3L% + Ko)(0m) = Oy for all m € P. Put § = L3L*, + K.
Then S acts like a unilateral shift on the Hilbert {?(P) with respect to
the canonical basis {0,, | m € P}.

And £,L35 is an orthogonal projection on the sub-Hilbert generated by
{02,04,05- -}, so I — LyL5 is the orthogonal projection on the subspace
generated by {dp,d2}. We denote £,L and I — L,L* by P, and Q,,
respectively. Since by [ 8 | the C*-algebra C*(Ly, L3) acts irreducibly
on [2(P) and Q, is the compact operator of rank two, the compact
operator algebra K(I*(H)) is contained in the C*-algebra C*(L3, Ls)
Hence Ky € C*(L3,Ls) and S € C*(L3, L2). And we can see that Lo
and L3 can be made by £3£5 and some compact operators|8].

THEOREM 3.5. [8] The C*-algebra C*(Lp) is generated by S.
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Since Coburn proved [1] that the C*-algebra generated by single non-
unitary isometry is isomorphic to the Toeplitz algebra, the C*-algebra
C*(L3, L) = C*(Lp) is isomorphic to the Toeplitz algebra.

THEOREM 3.6. The operator S in B(I?(P)) is GCR.

Proof. Since C*(S) = C*(Ls3,L5) = C*(Lp) is isomorphic to the
Toeplitz algebra, S is GCR. O]
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