ISOMORPHISMS AND DERIVATIONS IN C*-TERNARY ALGEBRAS

Jong Su An* and Chunkil Park

Abstract

In this paper, we investigate isomorphisms between C^{*} ternary algebras and derivations on C^{*}-ternary algebras associated with the Cauchy-Jensen functional equation $$
2 f\left(\frac{x+y}{2}+z\right)=f(x)+f(y)+2 f(z),
$$ which was introduced and investigated by Baak in [2].

1. Introduction and preliminaries

Ternary structures and their generalization, the so-called n-ary structures, raise certain hopes in view of their applications in physics (see [17, 18]).

A C^{*}-ternary algebra is a complex Banach space A, equipped with a ternary product $(x, y, z) \mapsto[x, y, z]$ of A^{3} into A, which is \mathbb{C}-linear in the outer variables, conjugate \mathbb{C}-linear in the middle variable, and associative in the sense that $[x, y,[z, w, v]]=[x,[w, z, y], v]=[[x, y, z], w, v]$, and satisfies $\|[x, y, z]\| \leq\|x\| \cdot\|y\| \cdot\|z\|$ and $\|[x, x, x]\|=\|x\|^{3}$ (see $[1,38]$). Every left Hilbert C^{*}-module is a C^{*}-ternary algebra via the ternary product $[x, y, z]:=\langle x, y\rangle z$.

If a C^{*}-ternary algebra $(A,[\cdot, \cdot, \cdot])$ has an identity, i.e., an element $e \in A$ such that $x=[x, e, e]=[e, e, x]$ for all $x \in A$, then it is routine to verify that A, endowed with $x \circ y:=[x, e, y]$ and $x^{*}:=[e, x, e]$, is a unital C^{*}-algebra. Conversely, if (A, \circ) is a unital C^{*}-algebra, then $[x, y, z]:=x \circ y^{*} \circ z$ makes A into a C^{*}-ternary algebra.

Received February 20, 2009. Revised March 10, 2009.
2000 Mathematics Subject Classification: Primary 39B52, 17A40, 46B03, 47Jxx.
Key words and phrases: Cauchy-Jensen functional equation, C^{*}-ternary algebra isomorphism, C^{*}-ternary derivation, generalized Hyers-Ulam stability.
*Corresponding author.

A \mathbb{C}-linear mapping $H: A \rightarrow B$ is called a C^{*}-ternary algebra homomorphism if

$$
H([x, y, z])=[H(x), H(y), H(z)]
$$

for all $x, y, z \in A$. If, in addition, the mapping H is bijective, then the mapping $H: A \rightarrow B$ is called a C^{*}-ternary algebra isomorphism. A \mathbb{C}-linear mapping $\delta: A \rightarrow A$ is called a C^{*}-ternary derivation if

$$
\delta([x, y, z])=[\delta(x), y, z]+[x, \delta(y), z]+[x, y, \delta(z)]
$$

for all $x, y, z \in A$ (see $[1,4,21]$).
In 1940, S.M. Ulam [37] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G^{\prime} with metric $\rho(\cdot, \cdot)$. Given $\epsilon>0$, does there exist $a \delta>0$ such that if $f: G \rightarrow G^{\prime}$ satisfies $\rho(f(x y), f(x) f(y))<\delta$ for all $x, y \in G$, then a homomorphism $h: G \rightarrow$ G^{\prime} exists with $\rho(f(x), h(x))<\epsilon$ for all $x \in G$?

In 1941, D.H. Hyers [11] considered the case of approximately additive mappings $f: E \rightarrow E^{\prime}$, where E and E^{\prime} are Banach spaces and f satisfies Hyers inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon
$$

for all $x, y \in E$. It was shown that the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and that $L: E \rightarrow E^{\prime}$ is the unique additive mapping satisfying

$$
\|f(x)-L(x)\| \leq \epsilon
$$

In 1978, Th. M. Rassias [28] provided a generalization of Hyers' Theorem which allows the Cauchy difference to be unbounded.

Theorem 1.1. (Th.M. Rassias) Let $f: E \rightarrow E^{\prime}$ be a mapping from a normed vector space E into a Banach space E^{\prime} subject to the inequality

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \tag{1.1}
\end{equation*}
$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon>0$ and $p<1$. Then the limit

$$
L(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

exists for all $x \in E$ and $L: E \rightarrow E^{\prime}$ is the unique additive mapping which satisfies

$$
\begin{equation*}
\|f(x)-L(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \tag{1.2}
\end{equation*}
$$

for all $x \in E$. If $p<0$ then inequality (1.1) holds for $x, y \neq 0$ and (1.2) for $x \neq 0$.

In 1990, Th.M. Rassias [29] during the $27^{\text {th }}$ International Symposium on Functional Equations asked the question whether such a theorem can also be proved for $p \geq 1$. In 1991, Z. Gajda [7] following the same approach as in Th.M. Rassias [28], gave an affirmative solution to this question for $p>1$. It was shown by Z. Gajda [7], as well as by Th.M. Rassias and P. Šemrl [34] that one cannot prove a Th.M. Rassias' type theorem when $p=1$. The counterexamples of Z. Gajda [7], as well as of Th.M. Rassias and P. Semrl [34] have stimulated several mathematicians to invent new definitions of approximately additive or approximately linear mappings, cf. P. Găvruta [8], S. Jung [15], who among others studied the Hyers-Ulam stability of functional equations. The inequality (1.1) that was introduced for the first time by Th.M. Rassias [28] provided a lot of influence in the development of a generalization of the Hyers-Ulam stability concept. This new concept is known as generalized Hyers-Ulam stability of functional equations (cf. the books of P. Czerwik [5], D.H. Hyers, G. Isac and Th.M. Rassias [12]).
P. Găvruta [8] provided a further generalization of Th.M. Rassias' Theorem. In 1996, G. Isac and Th.M. Rassias [14] applied the generalized Hyers-Ulam stability theory to prove fixed point theorems and study some new applications in Nonlinear Analysis. In [13], D.H. Hyers, G. Isac and Th.M. Rassias studied the asymptoticity aspect of HyersUlam stability of mappings. During the several papers have been published on various generalizations and applications of Hyers-Ulam stability and generalized Hyers-Ulam stability to a number of functional equations and mappings, for example : quadratic functional equation, invariant means, multiplicative mappings - superstability, bounded nth differences, convex functions, generalized orthogonality functional equation, Euler-Lagrange functional equation, Navier-Stokes equations. Several mathematician have contributed works on these subjects; we mention a few: S. Jung and B. Chung [16], M. Mirzavaziri and M.S. Moslehian [20], C. Park [22]-[27], Th.M. Rassias [30]-[33], F. Skof [36].

In [9], Gilányi showed that if f satisfies the functional inequality

$$
\begin{equation*}
\left\|2 f(x)+2 f(y)-f\left(x y^{-1}\right)\right\| \leq\|f(x y)\| \tag{1.3}
\end{equation*}
$$

then f satisfies the Jordan-von Neumann functional equality

$$
2 f(x)+2 f(y)=f(x y)+f\left(x y^{-1}\right) .
$$

See also [35]. Gilányi [10] and Fechner [6] proved the generalized HyersUlam stability of the functional inequality (1.3). In [3], the author proved the generalized Hyers-Ulam stability of functional inequalities associated with Jordan-von Neumann type additive functional equations.

Throughout this paper, assume that A is a C^{*}-ternary algebra with norm $\|\cdot\|_{A}$, and that B is a C^{*}-ternary algebra with norm $\|\cdot\|_{B}$.

In Section 2, we investigate isomorphisms between C^{*}-ternary algebras associated with the Cauchy-Jensen functional equation.

In Section 3, we investigate derivations on C^{*}-ternary algebras associated with the Cauchy-Jensen functional equation.

2. Isomorphisms between C^{*}-ternary algebras

In this section, we investigate isomorphisms between C^{*}-ternary algebras associated with the Cauchy-Jensen functional equation.

Lemma 2.1. ([3]) Let $f: A \rightarrow B$ be a mapping such that

$$
\|f(x)+f(y)+2 f(z)\|_{B} \leq\left\|2 f\left(\frac{x+y}{2}+z\right)\right\|_{B}
$$

for all $x, y, z \in A$. Then f is Cauchy additive.
Theorem 2.2. Let $r>3$ and θ be nonnegative real numbers, and let $f: A \rightarrow B$ be a bijective mapping such that

$$
\begin{equation*}
\|f(\mu x)+\mu f(y)+2 f(z)\|_{B} \leq\left\|2 f\left(\frac{x+y}{2}+z\right)\right\|_{B} \tag{2.1}
\end{equation*}
$$

$(2.2)\|f([x, y, z])-[f(x), f(y), f(z)]\|_{B} \leq \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)$
for all $\mu \in \mathbb{T}^{1}:=\{\lambda \in \mathbb{C}|\quad| \lambda \mid=1\}$ and all $x, y, z \in A$. Then the mapping $f: A \rightarrow B$ is a C^{*}-ternary algebra isomorphism.

Proof. Let $\mu=1$ in (2.1). By Lemma 2.1, the mapping $f: A \rightarrow B$ is Cauchy additive.

Letting $y=-x$ and $z=0$, we get

$$
\|f(\mu x)+\mu f(-x)\|_{B} \leq\|2 f(0)\|_{B}=0
$$

for all $x \in A$ and all $\mu \in \mathbb{T}^{1}$. So

$$
f(\mu x)-\mu f(x)=f(\mu x)+\mu f(-x)=0
$$

for all $x \in A$ and all $\mu \in \mathbb{T}^{1}$. Hence $f(\mu x)=\mu f(x)$ for all $x \in A$ and all $\mu \in \mathbb{T}^{1}$. By the same reasoning as in the proof of Theorem 2.1 of [24], the mapping $f: A \rightarrow B$ is \mathbb{C}-linear.

It follows from (2.2) that

$$
\begin{aligned}
& \|f([x, y, z])-[f(x), f(y), f(z)]\|_{B} \\
& \quad=\lim _{n \rightarrow \infty} 8^{n}\left\|f\left(\frac{[x, y, z]}{2^{n} \cdot 2^{n} \cdot 2^{n}}\right)-\left[f\left(\frac{x}{2^{n}}\right), f\left(\frac{y}{2^{n}}\right), f\left(\frac{z}{2^{n}}\right)\right]\right\|_{B} \\
& \quad \leq \lim _{n \rightarrow \infty} \frac{8^{n} \theta}{2^{n r}}\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)=0
\end{aligned}
$$

for all $x, y, z \in A$. Thus

$$
f([x, y, z])=[f(x), f(y), f(z)]
$$

for all $x, y, z \in A$. Hence the bijective mapping $f: A \rightarrow B$ is a C^{*} ternary algebra isomorphism.

Theorem 2.3. Let $r<3$ and θ be positive real numbers, and let $f: A \rightarrow B$ be a bijective mapping satisfying (2.1) and (2.2). Then the mapping $f: A \rightarrow B$ is a C^{*}-ternary algebra isomorphism.

Proof. The proof is similar to the proof of Theorem 2.2.

3. Derivations on C^{*}-ternary algebras

In this section, we investigate derivations on C^{*}-ternary algebras associated with the Cauchy-Jensen functional equation.

Theorem 3.1. Let $r>3$ and θ be nonnegative real numbers, and let $f: A \rightarrow A$ be a mapping satisfying (2.1) such that

$$
\begin{align*}
\| f([x, y, z]) & -[f(x), y, z]-[x, f(y), z]-[x, y, f(z)] \|_{A} \\
& \leq \theta\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right) \tag{3.1}
\end{align*}
$$

for all $x, y, z \in A$. Then the mapping $f: A \rightarrow A$ is a C^{*}-ternary derivation.

Proof. By the same reasoning as in the proof of Theorem 2.2, the mapping $f: A \rightarrow A$ is \mathbb{C}-linear.

It follows from (3.1) that

$$
\begin{aligned}
& \|f([x, y, z])-[f(x), y, z]-[x, f(y), z]-[x, y, f(z)]\|_{A} \\
& =\lim _{n \rightarrow \infty} 8^{n} \| f\left(\frac{[x, y, z]}{8^{n}}\right)-\left[f\left(\frac{x}{2^{n}}\right), \frac{y}{2^{n}}, \frac{z}{2^{n}}\right] \\
& -\left[\frac{x}{2^{n}}, f\left(\frac{y}{2^{n}}\right), \frac{z}{2^{n}}\right]-\left[\frac{x}{2^{n}}, \frac{y}{2^{n}}, f\left(\frac{z}{2^{n}}\right)\right] \|_{A} \\
& \leq \lim _{n \rightarrow \infty} \frac{8^{n} \theta}{2^{n r}}\left(\|x\|_{A}^{r}+\|y\|_{A}^{r}+\|z\|_{A}^{r}\right)=0
\end{aligned}
$$

for all $x, y, z \in A$. So

$$
f([x, y, z])=[f(x), y, z]+[x, f(y), z]+[x, y, f(z)]
$$

for all $x, y, z \in A$. Thus the mapping $f: A \rightarrow A$ is a C^{*}-ternary derivation.

Theorem 3.2. Let $r<3$ and θ be positive real numbers, and let $f: A \rightarrow A$ be a mapping satisfying (2.2) and (3.1). Then the mapping $f: A \rightarrow A$ is a C^{*}-ternary derivation.

Proof. The proof is similar to the proofs of Theorems 2.2 and 3.1.

References

[1] M. Amyari and M.S. Moslehian, Approximately ternary semigroup homomorphisms, Lett. Math. Phys. 77 (2006), 1-9.
[2] C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta Math. Sinica (to appear).
[3] C. Baak, Y. Cho, M. Han, M.S. Moslehian, Stability of functional inequalities associated with Jordan-von Neumann type additive functional equations, (preprint).
[4] C. Baak, Isomorphisms between C^{*}-ternary algebras, J. Math. Anal. Appl. (to appear).
[5] P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
[6] W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161.
[7] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434.
[8] P. Gãvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[9] A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math. 62 (2001), 303-309.
[10] A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707710.
[11] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[12] D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[13] D.H. Hyers, G. Isac and Th.M. Rassias, On the asymptoticity aspect of HyersUlam stability of mappings, Proc. Amer. Math. Soc. 126 (1998), 425-430.
[14] G. Isac and Th.M. Rassias, Stability of ψ-additive mappings : Applications to nonlinear analysis, Internat. J. Math. Math. Sci. 19 (1996), 219-228.
[15] S. Jung, On the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 204 (1996), 221-226.
[16] S. Jung and B. Chung, Remarks on Hyers-Ulam stability of Butler-Rassias functional equation, Dyn. Contin. Discrete Impuls. Syst. Ser. A - Math. Anal. 13 (2006), 193-197.
[17] R. Kerner, The cubic chessboard: Geometry and physics, Classical Quantum Gravity 14 (1997), A203-A225.
[18] R. Kerner, Ternary algebraic structures and their applications in physics(preprint).
[19] Gy. Maksa and P. Volkmann, Characterization of group homomorphisms having values in an inner product space, Publ. Math. Debrecen 56 (2000), 197-200.
[20] M. Mirzavaziri and M.S. Moslehian, Automatics continuity of σ-derivations on C^{*}-algebras, Proc. Amer. Math. Soc. 134 (2006), 3319-3327.
[21] M.S. Moslehian and L. Szekelyhidi, Stability of ternary homomorphisms via generalized Jensen equation, Results Math. (to appear).
[22] C. Park, Multi-quadratic mappings in Banach spaces, Proc. Amer. Math. Soc. 131 (2003), 2501-2504.
[23] C. Park, On an approximate automorphism on a C^{*}-algebra, Proc. Amer. Math. Soc. 132 (2004), 1739-1745.
[24] C. Park, Homomorphisms between Poisson JC ${ }^{*}$-algebras, Bull. Braz. Math. Soc. 36 (2005), 79-97.
[25] C. Park, A generalized Jensen's mapping and linear mappings between Banach modules, Bull. Braz. Math. Soc. 36 (2005), 333-362.
[26] C. Park, Hyers-Ulam-Rassias stability of a generalized Euler-Lagrange type additive mapping and isomorphisms between C^{*}-algebras, Bull. Belgian Math. Soc.-Simon Stevin (to appear).
[27] C. Park, Hyers-Ulam-Rassias stability of a generalized Apollonius-Jensen type additive mapping and isomorphisms between C^{*}-algebras, Math. Nachr. (to appear).
[28] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[29] Th.M. Rassias,Problem 16; 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39 (1990), 292-293; 309.
[30] Th.M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378.
[31] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284.
[32] Th.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130.
[33] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003.
[34] Th.M. Rassias and P. Šemrl, On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.
[35] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191-200.
[36] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.
[37] S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
[38] H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48 (1983), 117-143.

Department of Mathematics Education
Pusan National University
Pusan 609-735, Republic of Korea
E-mail: jsan63@pusan.ac.kr
Department of Mathematics
Hanyang University
Seoul 133-791, Republic of Korea
E-mail: baak@hanyang.ac.kr

