Abstract
Learning user's preference is a key issue in intelligent system such as personalized service. The study on user preference model has adapted simple user preference model, which determines a set of preferred keywords or topic, and weights to each target. In this paper, we recommend multi-perspective user preference model that factors sentiment information in the model. Based on the topicality and sentimental information processed using natural language processing techniques, it learns a user's preference. To handle timc-variant nature of user preference, user preference is calculated by session, short-term and long term. User evaluation is used to validate the effect of user preference teaming and it shows 86.52%, 86.28%, 87.22% of accuracy for topic interest, keyword interest, and keyword favorableness.
개인화 서비스와 같은 지능정보 시스템을 위해서는 사용자 선호도의 학습은 중요한 연구 분야이다. 본 연구에서는 채팅 도메인에서의 사용자 선호도를 학습하는 방법을 제시하며, 기존의 평면적인 사용자 선호도 모델의 문제점을 해결하기 위한 사용자 선호도 모델을 제안한다. 사용자가 선호도 학습의 대상에 대하여 얼마나 관심이 있는가를 나타내는 관심도와 대상에 대한 감성을 나타내는 호감도 라는 요소로 모델링 할 수 있다. 자연어 처리를 통해 현재 대화에서의 주제 탐지와 호감도 분석을 하고, 이를 이용하여 사용자의 선호도와 호감도를 학습한다. 시간의 흐름에 따라 변하는 사용자 선호도의 특징을 고려하여, 사용자 선호도를 세션, 단기, 장기 선호도로 나누어 계산한다. 사용자선호도 학습의 대상이 되는 키워드와 주제에 대하며 시간에 따라 변하는 사용자의 선호도 변화를 고려하여 선호도 결정을 한다 사용자 선호도 학습 효과의 검증을 위하여 사용자 평가를 하였으며 주제 선호도, 키워드 선호도, 키워드 호감도에 대하여 각각 86.52%, 86.28%, 87.22%의 성능을 보였다.