Abstract
Though edge detection, an important stage that significantly affecting the performance of image recognition, has been given numerous researches on its execution methods, it still remains as difficult problem and it is one of the components for image recognition applications while it is not the only way to identify an object or track a specific area. This paper, unlike gradient operator using edge detection method, found out edge pixel by referring to 2 neighboring pixels information in binary image and comparing them with pre-defined 4 edge pixels pattern, and detected binary image edge by determining the direction of the next edge detection exploring pixel and proposed method to detect binary image edge by repeating step of edge detection to detect another area edge. When recognizing image, if edge is detected with the use of gradient operator, thinning process, the stage next to edge detection, can be omitted, and with the edge detection algorithm executing time reduced compared with existing area edge tracing method, the entire image recognizing time can be reduced by applying real-time image recognizing system.
경계 검출은 영상 인식의 성능을 좌우하는 중요한 단계로서 지금까지 많은 경계 검출 방법들이 연구되어 왔음에도 불구하고 여전히 어려운 문제로 남아있으며, 영상에서 객체를 인식하거나 특정 영역을 추적하는 등의 유일한 방법은 아니지만 영상 인식 응용 분야에서 중요한 요소들 중의 하나이다. 본 논문에서는 미분 연산자를 이용한 경계검출 방법과는 달리 이진화 영상에서 2개의 이웃된 픽셀 정보를 참조하여 미리 정의된 4개의 경계 픽셀 패턴과 비교하여 경계 픽셀을 찾고, 다음 경계 검출 탐색 픽셀에 대한 방향을 결정하여 영역의 경계를 검출하며, 다음 영역의 경계 검출을 위하여 방문하지 않은 픽셀들을 탐색하면서 경계 검출 단계를 반복 수행하여 이진화 영상의 경계를 검출하는 방법을 제안하였다. 영상 인식에 있어 미분 연산자를 이용하여 경계 검출을 할 경우 경계 검출 다음 단계인 세선화 과정을 생략할 수 있었으며, 기존의 영역 경계 추적 방법에 비해 경계 검출 알고리즘 수행 시간을 단축하여 실시간으로 영상을 인식하는 시스템에 적용하여 전체적인 영상 인식 시간을 단축할 수 있었다.