DOI QR코드

DOI QR Code

Effects of Template Size and Content on Porosity and Strength of Macroporous Zirconia Ceramics

기공형성제 크기와 함량이 다공질 지르코니아 세라믹스의 가공율과 강도에 미치는 영향

  • Chae, Su-Ho (Department of Materials Science and Engineering, the University of Seoul) ;
  • Kim, Young-Wook (Department of Materials Science and Engineering, the University of Seoul) ;
  • Song, In-Hyuek (Powder Materials Research Division, Korea Institute of Materials Science) ;
  • Kim, Hai-Doo (Powder Materials Research Division, Korea Institute of Materials Science) ;
  • Bae, Ji-Soo (Young-Jin Ceramics Co., Ltd)
  • Published : 2009.01.31

Abstract

Using zirconia and poly (methyl methacrylate-coethylene glycol dimethacrylate) (PMMA) microbeads, macroporous zirconia ceramics were fabricated by a simple pressing method. Effects of template size and content on microstructure, porosity, and flexural and compressive strengths were investigated in the processing of the macroporous zirconia ceramics. Three different sizes of microbeads (8, 20, and $50{\mu}m$) were used as a template for fabricating the macroporous ceramics. The porosity increased with increasing the template size at the same template content. The flexural and compressive strengths were primarily influenced by the porosity rather than the template size. However, the strengths increased with decreasing the template size at the same porosity. By controlling the template size and content, it was possible to produce macroporous zirconia ceramics with porosities ranging from 58% to 75%. Typical flexural and compressive strength values at 60% porosity were ${\sim}30\;MPa$ and ${\sim}75\;MPa$, respectively.

Keywords

References

  1. Y. P. Jin and Y. T. Chou, “Thermal and Mechanical Properties of Porous Y-PSZ/Zircon Composites,” Mater. Res. Innovat., 1 227-30 (1998). https://doi.org/10.1007/s100190050045
  2. J. W. Baek and D. J. Kim, “Ceramic Foams by the Self-Blowing of Polymer (in Korean),” J. Kor. Ceram. Soc., 41 [7] 555-59 (2004). https://doi.org/10.4191/KCERS.2004.41.7.555
  3. S. H. Lee and Y.-W. Kim, “Processing of Cellular SiC Ceramics Using Polymer Microbeads,” J. Kor. Ceram. Soc., 43 [8] 458-62 (2006). https://doi.org/10.4191/KCERS.2006.43.8.458
  4. J. H. Eom, D. H. Jang, Y.-W. Kim, I. H. Song, and H. D. Kim, “Low Temperature Processing of Porous Silicon Carbide Ceramics by Carbothermal Reduction (in Korean),” J. Kor. Ceram. Soc., 43 [9] 552-57 (2006). https://doi.org/10.4191/KCERS.2006.43.9.552
  5. D. H. Jang, K. Y. Lim, and Y.-W. Kim, “Effects of Additive Composition and Content on Sintered Density and Compressive Compressive Strength of Cordierite Ceramics (in Korean),” J. Kor. Ceram. Soc., 44 [4] 230-34 (2007). https://doi.org/10.4191/KCERS.2007.44.4.230
  6. J. H. Eom and Y.-W. Kim, “Fabrication of Silicon Oxycarbide Foams from Extruded Blends of Polysiloxane, Low-Density Polyethylene (LDPE), and Polymer Microbead,” Met. Mater. Int., 13 [6] 521-25 (2007). https://doi.org/10.1007/BF03027913
  7. B. H. Yoon, E. J. Lee, H. E. Kim, and Y. H. Koh, “Highly Aligned Porous Silicon Carbide Ceramics by Freezing Polycarbosilane/Camphene Solution,” J. Am. Ceram. Soc., 90 [6] 1753-59 (2007). https://doi.org/10.1111/j.1551-2916.2007.01703.x
  8. Y.-W. Kim, J. H. Eom, C. Wang, and C. B. Park, “Processing of Porous Silicon Carbide Ceramics from Carbon- Filled Polysiloxane by Extrusion and Carbothermal Reduction,” J. Am. Ceram. Soc., 91 [4] 1361-64 (2008). https://doi.org/10.1111/j.1551-2916.2008.02280.x
  9. C. Heisel, M. Silva, and T. P. Schmalzried, “Bearing Surface Options for Total Hip Replacement in Young Patients,” J. Bone. Jt. Surg., 85 [7] 1366-79 (2003).
  10. G. Dell'Agli, S. Esposito, G. Mascolo, M. C. Mascolo, and C. Pagliuca, “Films by Slurry Coating of Nanometric YSZ (8 mol% $Y_2O_3$) Powders Synthesized by Low-Temperature Hydrothermal Treatment,” J. Euro. Ceram. Soc., 25 [12] 2017-21 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.006
  11. I. K. Jun, Y. H. Koh, J. H. Song, S. H. Lee, and H. E. Kim, “Improved Compressive Strength of Reticulated Porous Zirconia Using Carbon Coated Polymeric Sponge As Novel Template,” Mater. Lett., 60 2507-10 (2006). https://doi.org/10.1016/j.matlet.2006.01.031
  12. A. K. Gain and B. T. Lee, “Microstructure Control of Continuously Porous t-$ZrO_2$ Bodies Fabricated by Multi-Pass Extrusion Process,” Mater. Sci. Eng. A, 419 269-75 (2006). https://doi.org/10.1016/j.msea.2005.12.033
  13. B. Nait-Ali, K. Haberko, H. Vesteghem, J. Absi, and D. S. Smith, “Thermal Conductivity of Highly Porous Zirconia,” J. Europ. Ceram. Soc., 26 3567-74 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.11.011
  14. A. K. Gain, H. Y. Song, and B. T. Lee, “Microstructure and Mechanical Properties of Porous Yttria Stabilized Zirconia Ceramic Using Poly Methyl Methacrylate Powder,” Scripta Mater., 54 2081-85 (2006). https://doi.org/10.1016/j.scriptamat.2006.03.009
  15. Z. Y. Deng, J. F. Yang, Y. Beppu, M. Ando, and T. Ohji, “Effect of Agglomeration on Mechanical Properties of Porous Zirconia Fabricated by Partial Sintering,” J. Am. Ceram. Soc., 85 [8] 1961-65 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00388.x
  16. X. Yang, Z. Xie, and L. Wang, “Fabrication of Porous Zirconia Ceramics by Injection Molding Method,” Key Eng. Mater., 368-372 758-61 (2008). https://doi.org/10.4028/www.scientific.net/KEM.368-372.758
  17. S. H. Chae, J. H. Eom, Y.-W. Kim, I. H. Song, H. D. Kim, J. S. Bae, S. M. Na, and S. I. Kim, “Porosity Control of Porous Zirconia Ceramics (in Korean),” J. Kor. Ceram. Soc., 45 [1] 65-8 (2008). https://doi.org/10.4191/KCERS.2008.45.1.065
  18. S. H. Chae, Y.-W. Kim, I. H. Song, H. D. Kim, and J. S. Bae, “Effect of Template Size Ratio on Porosity and Strength of Porous Zirconia Ceramics (in Korean),” J. Kor. Ceram. Soc., 45 [9] 537-43 (2008). https://doi.org/10.4191/KCERS.2008.45.9.537
  19. J. H. Eom and Y.-W. Kim, “Effect of Template Size on Microstructure and Strength of Porous Silicon Carbide Ceramics,” J. Ceram. Soc. Jpn, 116 [10] 1159-63 (2008). https://doi.org/10.2109/jcersj2.116.1159
  20. Y.-W. Kim, H. D. Kim, and C. B. Park, “Processing of Microcellular Mullite,” J. Am. Ceram. Soc., 88 [12] 3311-15 (2005). https://doi.org/10.1111/j.1551-2916.2005.00597.x

Cited by

  1. Flexural Strength of Macroporous Silicon Carbide Ceramics vol.48, pp.5, 2011, https://doi.org/10.4191/kcers.2011.48.5.360
  2. Fabrication of Porous W by Heat Treatment of Pore Forming Agent of PMMA and WO3 Powder Compacts vol.22, pp.2, 2015, https://doi.org/10.4150/KPMI.2015.22.2.129
  3. Properties of Working Electrodes with Polystyrene Beads Addition in Dye Sensitized Solar Cells vol.52, pp.5, 2015, https://doi.org/10.4191/kcers.2015.52.5.380
  4. Characterization of Lightweight Earthenware Tiles using Foaming Agents vol.52, pp.6, 2015, https://doi.org/10.4191/kcers.2015.52.6.473