DOI QR코드

DOI QR Code

Investigation on the Pore Properties of the Microcellular ZrO2 Ceramics Using Hollow Microsphere

중공형 미세구를 이용한 마이크로셀룰라 지르코니아의 가공 특성 고찰

  • Lee, Eun-Jung (Engineering Ceramics Group, Korea Institute of Materials Science) ;
  • Song, In-Hyuek (Engineering Ceramics Group, Korea Institute of Materials Science) ;
  • Kim, Hai-Doo (Engineering Ceramics Group, Korea Institute of Materials Science) ;
  • Kim, Young-Wook (Department of Materials Science and Engineering, The University of Seoul) ;
  • Bae, Ji-Soo (Young-Jin Ceramics Co., Ltd.)
  • 이은정 (재료연구소 구조세라믹연구그룹) ;
  • 송인혁 (재료연구소 구조세라믹연구그룹) ;
  • 김해두 (재료연구소 구조세라믹연구그룹) ;
  • 김영욱 (서울시립대학교 신소재공학과) ;
  • 배지수 (연진세라믹스)
  • Published : 2009.01.31

Abstract

In this study, a novel-processing route for producing microcellular zirconia ceramics has been developed. The proposed strategy for making the microcellular zirconia ceramics involves hollow microsphere as a pore former which has extremely low density of $0.025\;g/cm^3$. Effects of hollow microsphere content and sintering temperature on microstructure, porosity, pore distribution, and compressive strength were investigated in the processing of microcellular zirconia ceramics. By controlling the content of hollow microsphere, it was possible to make the porous zirconia ceramics with porosities ranging from 45% to 75%. Typical compressive strength value of microcellular zirconia ceramics with ${\sim}65%$ porosity was over 50 MPa. By adjusting the mixing ratio of large and small zirconia powders, it was possible to control the pore structure from close to open pores.

Keywords

References

  1. J. Saggio-Woyansky, C. E. Scott, and W. P. Minnear, “Processing of Porous Ceramics,” Am. Ceram. Soc. Bull., 71 [11] 1674-82 (1992).
  2. P. Sepulveda, “Gelcasting Foams for Porous Ceramics,” Am. Ceram. Soc. Bull., 76 [10] 61-5 (1997).
  3. W. Wu, T. Fujiu, and G. L. Messing, “Synthesis of Cellular Inorganic Materials by Foaming Sol-Gels,” J. Non-Cryst. Solids, 121 407-12 (1990). https://doi.org/10.1016/0022-3093(90)90167-K
  4. I. H. Song, M. J. Kim, H. D. Kim, and Y.-W. Kim, “Processing of Microcellular Cordierite Ceramics from a Preceramic Polymer,” Scripta Mater., 54 1521-25 (2006). https://doi.org/10.1016/j.scriptamat.2005.12.039
  5. Y.-W. Kim, H. D. Kim, and C. B. Park, “Processing of Microcellular Mullite,” J. Am. Ceram. Soc., 88 [12] 3311-15 (2005). https://doi.org/10.1111/j.1551-2916.2005.00597.x
  6. Y.-W. Kim. Y. J. Jin, Y. S. Chun, I. H. Song, and H. D. Kim, “A Simple Pressing Route to Closed-Cell Microcellular Ceramics,” Scripta Mater., 53 921-25 (2005). https://doi.org/10.1016/j.scriptamat.2005.06.032
  7. I. H. Song, Y. M. Kim, H. D. Kim, and Y.-W. Kim, “Synthesis of Microcellular Cordierite Ceramics Derived from a Preceramic Polymer,” J. Kor. Ceram. Soc., 44 [5] 184-89 (2007). https://doi.org/10.4191/KCERS.2007.44.5.184
  8. G. Suárez, L. B. Garrido, and E. F. Aglietti, “Sintering Kinetics of 8Y-Cubic Zirconia: Cation Diffusion Coefficient,” Materials Chemistry and Physics, 110 [2-3] 370-75 (2008). https://doi.org/10.1016/j.matchemphys.2008.02.021
  9. S. Ramanathan and S. K. Roy, “Liquid Phase Sintering of Yttria-Stabilised Zirconia,” Interceram, 4 253-55 (1994).
  10. M. P. Albano, L. A. Genova, L. B. Garrido, K. Plucknett, “Processing of Porous Yttria-stabilized Zirconia by Tape-casting,” Ceramics International, 34 [8] 1983-88 (2008). https://doi.org/10.1016/j.ceramint.2007.07.028
  11. I. K. Jun, Y. H. Koh, J. H. Song, S. H. Lee, and H. E. Kim, “Improved Compressive Strength of Reticulated Porous Zirconia Using Carbon Coated Polymeric Sponge As Novel Template,” Mater. Lett., 60 2507-10 (2006). https://doi.org/10.1016/j.matlet.2006.01.031
  12. A. K. Gain and B. T. Lee, “Microstructure Control of Continuously Porous t-$ZrO_2$ Bodies Fabricated by Multi-Pass Extrusion Process,” Mater. Sci. & Eng. A, 419 269-75 (2006). https://doi.org/10.1016/j.msea.2005.12.033
  13. B. Nait-Ali, K. Haberko, H. Vesteghem, J. Absi, and D. S. Smith, “Thermal Conductivity of Highly Porous Zirconia,” J. Europ. Ceram. Soc., 26 3567-74 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.11.011
  14. A. K. Gain, H. Y. Song, and B. T. Lee, “Microstructure and Mechanical Properties of Porous Yttria Stabilized Zirconia Ceramic Using Poly Methyl Methacrylate Powder,” Scripta Mater., 54 2081-85 (2006). https://doi.org/10.1016/j.scriptamat.2006.03.009
  15. S. H. Chae, J. H. Eom, Y.-W. Kim, I. H. Song, H. D. Kim, J. S. Bae, S. M. Na, and S. I. Kim, “Porosity Control of Porous Zirconia Ceramics,” J. Kor. Ceram. Soc., 45 [1] 65-8 (2008). https://doi.org/10.4191/KCERS.2008.45.1.065
  16. S. H. Chae, Y.-W. Kim, I. H. Song, H. D. Kim, and J. S. Bae “Effect of Template Size Ratio on Porosity and Strength of Porous Zirconia Ceramics,” J. Kor. Ceram. Soc., 45 [9] 537-43 (2008). https://doi.org/10.4191/KCERS.2008.45.9.537

Cited by

  1. Flexural Strength of Macroporous Silicon Carbide Ceramics vol.48, pp.5, 2011, https://doi.org/10.4191/kcers.2011.48.5.360
  2. Effects of Pre-sintered Granules on the Characteristics of Porous Zirconia vol.49, pp.6, 2012, https://doi.org/10.4191/kcers.2012.49.6.566
  3. Fabrication and Mechanical Properties of High-strength Porous Supports for High Temperature Oxygen Transport Membrane vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.423