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Abstract

Best subset selection procedure based on mutnal information (MI) between a set of explanatory variables
and a dependent class variable is suggested. Derivation of multivariate MI is based on normal mixtures. Several
types of normal mixtures are proposed. Also a best subset selection algorithm is proposed. Four real data sets
are employed to demonstrate the efficiency of the proposals.
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1. Introduction

Feature selection or variable selection has been one of the most important topics in data analysis.
For instance, the stepwise variable selection method is widely applied in developing a best model in
various regression problems. However, such a variable selection method is available rather limited
applications. The screening variables before analysis may be more conventional method and has
been used more often than the model based variable selection procedure. Note, however, that the
conventional method may also fail when the explanatory variables are of complex types. Liu and
Motoda (1998) gives a good survey on this topic.

Recently, various methods for screening or ranking of complex types of variables have been in-
vestigated specially in machine learning area. Examples of the study for variable ranking for the
complex data types are ReliefF by Kononenko et al. (1997), and MDI (measure of departure from
independence) by Lee and Huh (2003). Another approach for variable selection is using mutual
information (MI) based on Shannon’s entropy theory (Shannon, 1948) to measure the association be-
tween explanatory variables and a class variable. In fact, many researcher have payed attention to the
mutual information as an ideal measure of association. See, for example, Cover and Thomas (1991),
Darbellay (1999), and Joe (1989). The most desirable property of MI is that it can measure all kinds
of dependency between variables and between groups of variables unlike the correlation coefficient
or the rank correlation coefficient. It is well-known that they can only account for linear relationships
or monotone dependencies between two variables. Beside the excellency, it seems that further studies
should be done to make MI as a practical measure of association, because the efficient estimation of
MI is an unsolved problem yet.

Some works have been done to investigate the distributional properties of the estimator of MI
(Brillinger, 2004; Christensen, 1997 and Hutter, 2002). Tourassi ef al. (2001) investigated the prop-
erty of application of MI for complex type variable selection. These works, however, are based on
measuring the association between discrete variables because they first discretize continuous variables
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for ML Obtaining MI through discretizing continuous variables raises several problems. Firstly, dis-
cretization itself is an NP-hard problem (Nguyen and Skowron, 1995), and the MI depends upon the
result of discretization. Secondly, for multivariate case, discretization will produce many empty cells
even with large sample sizes, and computing MI will be unstable. Consider, for example, the case of
3 variables with 10 categories for each variable. This will introduce 10° = 1,000 cells, and most of
the cells will be empty even with large number of observations. This is especially a severe problem
when there are huge number of variables with not so large sample sizes which is usually the case with
gene selection problems.

We do not have the above problems of discretization if we compute MI between continuous ex-
planatory variables and a discrete class variable directly from the data. This requires density estima-
tion, and Parzen filter approach has been used (Torkkola and Campbell, 2000; Kojadinovic, 2005).
Density estimation usually requires lots of computing efforts, and it is well known that this nonpara-
metric approach does not provide efficient result.

In next section, we proposes an easy—to—compute models for MI between continuous explanatory
variables and a discrete class variable using normal mixtures. The moment estimation approach is em-
ployed to obtain entropy. We consider simple 1-component normal and 2-components normal mixture
to estimate the unknown multivariate density of the continuous explanatory variables when the cate-
gory of a class variable is given. In Section 3, we suggest an algorithm for best subset selection. The
algorithm is not a perfect enumeration, but tries to find a sub-optimal subset based on the information
between explanatory and class variables. In Section 4, four real data sets from UCI database (Merz
and Murphy, 1996) are employed to demonstrate the efficiency of the proposed models. The eval-
uations of the models are performed using 10—fold cross validation with logistic regression and J48
decision tree implemented in Weka (Wiiten and Frank, 1999). We also provide the process of data
visualization using DAVIS (Huh and Song, 2002) to visually confirm the efficiency of the results of
subset variable selection, whenever possible.

2. Estimation of Mutual Information

Mutual information (MI) between two random variables X and Y is defined as:

Pr ’
1061 = 3 S Prx.y) log 5orce?)

—_— 2.1)
xeX yeY Pr(x) Pr(y)

where X and Y are the finite sets of values of all possible values for X and Y, respectively. It is
straightforward to see that MI can be rewritten as follows:

I(X;Y) = H(X) + H(Y) - H(X,Y) = H(X) - HX|Y) = H(Y) - H¥|X) (22)
where H denotes the entropy of a random variable, and is defined to be ,
HX) = - Z Pr(x) log Pr(x) (2.3)
xeX
H(X|Y) == " Pr(y) ) Pr(xy) log Pr(xly) @24)
yeY xeX

A natural extension of MI to the case when X is continuous and Y is discrete is using the integral
instead of summation. Doing this, H(X) and H(X|Y) are defined as follows:

H(X) =~ f f(x)log fx(x)dx _ : (2.5)
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K
HX|Y) = - Z Pk f Jxir(xlk)log fxy (x k)dx (2.6)
k

where fx(x) is the marginal density of X, fyy(x|k) is the conditional density of X given ¥ = k with
Pr = fr(k),k=1,..., K, where K being the number of categories of Y.

Now we assume fxy(x k) to be a normal density with mean y; and variance or]f. Then it is easy to
check that

K
1 2
H(X|Y) = 5(1 +log27) + ; pilog(a}).
Substituting o-,% and p; by their estimates, we can obtain the estimate of H(X|Y). Unlike the simplicity

in obtaining the estimate of H(X|Y), the estimation procedure for H(X) is a little bit complicate. The
marginal density of X is given by

K K K
f@ =) frr® b =Y pefar(cl) = . i) e o)
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where ¢(x |u, o) denotes the density of a normal random variable with mean u and standard deviation
o. Since H(X) is the expected value of —log fx(x), a natural estimate can be obtained by the method
of moments which would give the sample mean of the realization of — log fx(x). Substituting i, 0%
and py, by their estimates, we have the following result.

. 1 n . 1 n K _ _
HX) ==~ > log fy(n) =~ ) log [Z pk¢<x,-rﬁk,crk)]
i=1 i= k=1

i

where 7 is the sample size and x;’s are the observed values of X. This approach can be easily extended
to the case of p-dimensional X as follows.

1. Estimation of MI: 1-component normal model.

MI for p-dimensional continuous variable X and discrete class variable ¥ can be estimated as
follows:

I(X|Y) = HX) - HX|Y) Q2.7
where
. 1 n K )
HX)=— 1 D i, 2 2.8
(X) n;og;pm(x fi> ) (2.8)
and
N K
HXIY) = 201 +10g2m) + > prloglSil 2.9)
2 k=1

X|Y = kis assumed to be normally distributed. However, the normality assumption might not
be appropriate in some cases. Previous studies have suggested to approximate fxy(x k) with normal
mixtures. For example, Wang (2001) showed that the mixture of normal distributions provides a useful
extension of the normal distribution for modeling data with fatter-than-normal tails or with skewness.
Thus we now assume that fyy(x|k) is the mixture of normal densities. However, a question might
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be arisen. How many normal distributions might be appropriate? MCLUST (Fraley and Raftery, 2002)
could give a partial answer to the question. It selects the number of distributions by the Bayesian
Information Criterion and uses the EM algorithm to estimate parameters. However, the procedure
requires lots of computing time to determine the number of components for normal mixtures when
the dimension of X is large. This makes it difficult to employ the algorithm of MCLUST directly to
compute the MI when the number of variables is large.

We have run several experiments and have observed that the 2-components mixture works quite
well for our purpose. Hence, we propose to assume that the density fxy(xlk) is a 2-components normal
mixture as given in the following:

Sar(xlk) = (1 = m)d(x |, or1) + md(x |2, o42) (2.10)

where 0 < ;. < 1. Then the marginal density of X can be written as

K
F) = D pel(l = TG (x s, o) + me(x e, 7). @11)
k=1
One way to estimate the 5 parameters (g, (1, a2, Tr1, 0x2) for each category k = 1,...,K is to

employ the EM algorithm. Plugging in these estimates to (2.11), we can estimate the marginal density
of X. Then, as before, H(X) is estimated by the sample mean of the realization of — log f(x),

. 1 n N 1 n K - .
H(X) =~ > log fy(x) = =~ > " log [Z PkfXIY(x|k)]- @.12)
i=1 i=1 k=1
Similarly, H(X|Y) can be estimated as follows:
. : K 1 ny . 1 K ' N
HX|Y) = - pr— > lo xpilk) = —— log fxy(xulk) 2.13)
;Pk " ; g fxy (X " kzz; ; g fxy (Xui

where py = ni/n, with n being the number of observations belonging to the k-th category of the target
variable Y.

2. Estimation of MI: 2-component normal mixture approximation
MI for the continuous variable X and discrete class variable Y can be estimated as follows:

1xX|1Y) = HX) - HX|Y) (2.14)
where .
Hx) = —% Z] log ; Pr((1 = R)B(xilfira, Gt ) + Red(xilfiaas F12) (2.15)
and
- 1 X Ry
HXIY) =~ 37 > log((1 = #g(xulier, Gr) + Re(raliias G12))- (2.16)
k=1 i

The estimates of 7y, pi1, 2, 0k1 and o7y are obtained by using the EM algorithm for the 2-components
normal mixture.
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This estimation process applies equally to the case of multidimensional X. In this case, the param-
eters (7, te1, fx2, Ok1, Ox2) in the above equations will be replaced by (i, g1, tr2, a1 » Zez), Where
Mk, Hip are p—dimensional mean-vector, and (Z;, %4,) are p X p dimensional variance-covariance
matrix. We can also apply the EM algorithm to estimate theses parameters.

We now consider a further simplified approximation formula to estimate MI assuming all the
p—variables are independent of each other.

3. Estimation of MI: X is multidimensional and independent.

Assuming the independence of the continuous p-dimensional variable X, MI between X and dis-
crete class variable Y can be estimated as follows:

1X|Y) = H(X) - HX|Y) (2.17)
where
. 1 n K R
HX) =~ ) log ) pra(is i, Do) 2.18)
i=1 k=1
and
—~ p K Ld
H(XIY) = 51 +log 2m) + Z prlog ﬂ &2 (2.19)

=1 i=1
with Dy, being the diagonal matrix of G7s.
When X is discrete, density fx(x) is always less than 1, and the entropy is non-negative. However,

Sfx(x) can be greater than 1 with continuous X, and this may cause the negative estimate of H(X). We

can safely set the negative entropy to O since this happens when the corresponding entropy is very
small.

3. Best Subset Selection Strategy

Selecting optimal set of variables with p competing variables requires computing 2” combinations of
multivariate MI's. When there are 10 variables, this requires investigating more than 1,000 different
sets of variables. A few heuristic approaches for subset variable selection strategies with discretized
variables have been suggested (see, for example, Battiti, 1994). These approaches are basically based
on the successive evaluation of the univariate MI's. However, the subset selection procedures based
on univariate MI may yield catastrophic result when there is a high interrelationships among the
variables. This will be demonstrated in the numerical examples of the next section.

Classical variable selection procedures used in linear regression models work well when the input
variables are nearly independent (Miller, 1990). Other selection methods were suggested. See for
example the work of Collett (2003). The methods considered only a portion of the complete enu-
merations of the subsets of the variables. We suggest another heuristic variable selection algorithm
that practically considers most of the enumerations of the subset combinations of the variables. The
algorithm consists of 4 steps.

Let 1 be the set of the indices corresponding to the initial set of variables from which the best
subset is to be selected, and let % be the set of indices corresponding to the subset of variables
selected as the best subset at current stage. The procedure is to update K either by adding a new
variable index or by removing a subset of redundant variables. The adding process find the index i*
satisfying

i* = argmax MI(Xy,;; Y).
iel-K
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Here K + i denots K U {i}, and 7 — K is I excluding K. After finding the index i*, the removing
process checks if there are any redundant variables in Xg which do not contribute to MI(X4,; ¥).
This process is finding the set of indices 7 satisfying

J = (jIMI(Xgsi-j3 ¥) 2 MI(Xges; 1), J € K}

If this new subset of variables Xg.»—g gives lower MI, we conclude Xy is the best subset. If not, we
replace K with K + i* — 7, and continue the above process until 7 — K becomes null.

When employing the algorithm in practice, we may have to consider the numerical instability.
In other words, if we are going to continue selection procedure based on the computed value of MI,
this may cause to continue selecting the next variables with a very small amount of increase in the
values. This is demonstrated in the next section. However, the computation of MI is based on several
steps of estimation such as the estimation of the mixture parameters by EM algorithm. Also there
may be numerical errors from the iterative computation of matrices. Hence, we may need to set some
allowance € when comparing the magnitude of the two computed MI’s for the selection procedure so
that the MI increase should exceed this value if the next variable is to be selected. It can also work
to control the number of variables to be selected. The amount of this value is purely dependent on
domain experts. For our experiments, we apply the concept of relative increase of 1% in the values of
two adjacent MI’s. The algorithm is as follows:

1. (Initialization).

I={il1,2,...,p} # indices of all variables.
K0 # indices of currently selected variables.
J <0 ' # indices of redundant variables.

€ < some small value

2. Apply the following stopping rule.

Let i* = argmax;. ;MI(Xyc.i; Y).
if MI(Xgc1i5 Y) — MI(Xge; ¥))/MI(Xg + 0% Y) < +€ {

return with 7€ # final selection: new selection does not increase MI.
{
else {
Ke—K+i* # add the new selection into K.
TeIT-1 # remove the selection from 1.

}

3. Check if any variable from the redundant variable subset can increase MI when this variable is
entered.

Let j* = argmax ; MI(Xg. j; Y).

if MI(Xg, 3 V) > MI(Xoc; V)
J<T-J # remove the variable from the redundant subset.
KK+ # add the variable into the current subset of selection.

}

4. Check if there is any redundant variables in the current subset selection.
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Let k" = argmax 4 MI(Xx_1; Y)

if MI(Xg_ie; ¥) > MI(Xyc: ) {
Ke—K-k # remove the variable from the current subset selection.
VESWEY 4 # add the variable into the redundant subset.

The algorithm considers all possible combinations starting with the largest univariate MI. There is
a stopping criterion in the algorithm, and this criterion will be met in the early stage of subset selection
process, unless the problem is catastrophic.

Remark 1. (Standardization of MI)

When the variable X is discrete type, MI tends to have larger values when the number of levels of
X gets larger. Also as the number of variables gets larger, MI tends to get larger. These make difficult
to use MI for the variable selection purpose. Press ez al. (1992) suggests the following quantity as a
standardized MI (SMI).

I(X:Y)

H(X)+ H(Y)

Extensive experiments have shown that SMI imposes too much penalty on MI with large number
of variables. As a result, too few variables (2 or 3) were selected in the most of our experiments.
When we use normal mixture to estimate MI for continuous X, increasing the number of variables
in X does not necessarily increase the value of MI. For example, adding a variable which is highly
correlated with the variables already in the model will decrease the value of MI. Hence, we will use
MI rather than SMI as a measure of information for subset selection criterion.

SMI(X; Y) = 2

4. Experiments with Real Data Sets

The end purpose of the variable selection strategy suggested in the paper is to find a subset of variables
that have high classification ability for the class variable. The subset selection is considered to be
worthwhile if the classification accuracy of selected variables is better than that of the whole variables.
In our experiments, the accuracy is measured by 10-fold cross validation with logistic regression and
J48 decision tree which are implemented in Weka.

The chosen 4 data sets are: Fisher’s Iris data (Iris), Wisconsin Prognostic Breast Cancer data
(Breast cancer), Image data (Image) and Wine data (Wine). Iris data set has 150 observations with
4 continuous variables (sepal length, sepal width, petal length, petal width) and a class variable
(species) with 3 categories (Iris-setosa, Iris-virginica, Iris-versicolor). Each category has 50 observa-
tions. Breast cancer data set has 31 variables and 569 observations. First 30 variables are continuous
and the last one is diagnosis information with 2 categories (malignant and benign with 212 and 357
observations each). The 3rd data set is Image data set, and has 210 observations with 18 continuous
and a class variable. There are 7 categories (7 different colors) for the class variable. Among the 18
continuous variables, the 3rd, the 4th, the 6th, and the 8th variables have only 2, 3, 3 and 5 different
values, respectively, and some values have only 1 or 2 observations. Hence, these 4 variables are elim-
inated from the analysis in this work. Wine data set has 178 observations on 13 continuous and a class
variable. The class variable has 3 categories and has 59, 71, and'48 observations in each category.

Table 1 and Figure 1 give the results of the univariate MI computed using the 1-component and
2-component normal mixtures for the 4 data sets. Figure 1 shows that 1-component and 2-components
models for computing univariate MI agree well for most of the situations, and especially they do for
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Table 1: Variable lists in the order of the magnitude of univariate MI’s. Data sets are, I: Iris, B: Breast Cancer,
M: Image, and W: Wine. Models are, 1C: 1-component normal(single normal), and 2C: 2-components normal
mixture.

Data Model Variable lists
I 1C 3 4 1 2
2C 3 4 1 2
B 1C 23 21 24 3 1 4 14 13 22 2 5 6 7 8 9 10 11 12
2C 15 16 17 18 19 20 25 26 27 28 29 30
M 1C 6 8 12 5 7 10 2 11 14 9 1 4 13
2C 5 8 12 6 7 10 2 11 9 14 4 1 3 13
W 1C 7 13 12 10 1 6 4 9 5 2 3 8 11
2C 7 13 10 12 1 6 9 4 5 2 3 8 11
MI’s for Iris data Mr’s for Breast Cancer data
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Figure 1: Univariate MI's of Iris, Breast cancer, Image and Wine data sets under 1-component normal and
2-components normal mixture models. The variable id’s are arranged in decreasing order of MI's.

the variables with larger MI's which will play important roles in subset variable selection. Thus using
the minimum description length principle, 1-component normal model is suggested instead of the
time-consuming 2-component normal mixture assumption to compute univariate MI’s.

To confirm the validity of the univariate MI, visual process of data exploration is provided using
DAVIS. For all the plots, colors represent the class information. The variables are rearranged in the
order of the magnitude of the univariate MI’s with 1-component normal model. Figure 2 is the FEDF
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Figure 2: FEDF plot of the Iris data set.

Figure 3: Box-plots of Breast cancer (top) and Wine (bottom) data sets.

(Huh, 1995) of the Iris data set. It shows that Petal Length and Petal Width clearly have the power
of classifying the class variable while Sepal Length and Sepal Width do not give much information
for the class variable. Also the plot shows that the distributions of Petal Length and Width do not
have symmetry and have 2 modals. Figure 3 gives the boxplots of the Breast Cancer and the Wine
data sets. It can be observed that for the first few variables, say 5 or 6 variables in both data sets, the
portion of overlapping area of boxplots is relatively small. Thus they can serve as good predictors for
the class variable. In particular, it seems that V23, V21 and V24 in the Breast cancer data set have
high classification ability.

However, these variables could be correlated. If they are highly correlated each other and a vari-
ables is selected among them, then it would not be suggested to select another variables in this group
because they would share common information about the class variable. Also it is well known that
the correlation among explanatory variables would reduce the prediction power in many classification
models. Thus it would not be desirable to select only variables with large value of univariate MI for
the best subset of variables.

Our variable selection strategy could safely avoid such kind of problem. To demonstrate this
point. We may refer to Figure 4 which is the scatterplot matrix of some variables in the Breast cancer
data. It shows clearly that V23, V21 and V24 have the ability to classify the class variable, but they
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Figure 5: Parallel plot of the Image data set.
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are correlated each others. Suppose that X = (V23, V21). Then the marginal distribution of X may
concentrates most of its mass on a small area constructed by the data points. Since the area with high
mass is narrow, fx(x) would have large value, say greater than 1, on this area, which in tern gives
negative or small value of H(X). The same phenomenon may happen for the estimation of H(X]|Y).
For each value of k, fyy(xlk) would be large. Thus both of H(X) and H(X|Y) would have small or
even negative values. Hence T(X ; Y) would be small or zero. On the other hand, we can observe
from Figure 3 that V25 have relatively less power than V21 or V24, but the scatterplot of V23 vs
V25 shows that they are uncorrelated and the combination of these two variables might have power
to classify the class variable because most data points are grouped by colors. Since the whole data
is widely spread than the grouped data, it is obvious that MI(V23, V25;Y) should have large value.
In fact the estimates of MI(V23, V25; Y) under 1-component normal with and without independence,
and 2-components normal mixture with and without assumptions are 0.519,0.530,0.519 and 0.532,
respectively. These values are considerably larger than 0.444, 0.414, 0.419 and 0.450, the estimates
of MI(V23, V21, Y). Thus we can safely choose (V23, V25) instead of (V23, V21) which have large
univariate MI’s.

Figure 5 gives the parallel coordinates of the Image data set. The plot shows that the first 5
variables of large MI’s also have high power of classification, and the lines go parallel with each
other which suggests the variables are highly correlated. It seems that most of the variables are quite
informative for the class variable except 3 variables (V1, V3, V4).

We have shown graphically that the estimates of univariate MI could identify the variables with
high classification ability. Now we will demonstrate the subset selection strategy would work well.
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Table 2: The summary of subset variable selection and the results of cross validation for each of the 4 data sets
and 4 different types of models. The first line for each model is the number of variables selected, second line is
the selected variable id’s, third line is the % accuracy of the 10-fold cross validation for logistic and J48 decision
tree. Considered models are: U: univariate MI, 1CI: 1-component independent, 1CD: 1-component dependent,
2CT. 2-component independent, 2CD: 2-component dependent, A: all variables and Cfs: CfsSubsetEval.

Models Iris Breast Image Wine
2 3 4 6

U 3,4 23,21,24 6,8,12,5 7,13,12,10, 1,6
96/96 92/90 78/76 94/94
2 3 4 6

1CT 3,4 23,28,22 6,14,2,1 7,1,11, 13, 10,5
96/96 96/94 86/90 97/94
4 4 5 6

1CD 3,1,4,2 23,25,22,15 6,8,2,13,1 7,10,13,11,5,1
96/96 97/94 90/81 97/94
4 4 4 5

2CI 3,4,1,2 23,28,22,11 52,14, 1 7,1,11,13,5
96/96 96/94 85/90 96/92
3 6 5 5

2CD 3,1,4 23,25,22,11, 28,27 5,2,14,11,6 7,13,11, 1,5
96/96 96/93 91/88 96/92
2 9 6 §

Cfs 3,4 2,7,8,14,21,23,24,27,28 2,6,9,11,13, 14 1,5,6,7,10,11,12,13
96/96 96/93 85/88 96/94

All 96/96 93/93 86/90 97/94

To this end, we have selected variables from those 4 data sets as the best subsets for classification.

The selections are done under 4 different models proposed in the paper with € = 0.01. Table 2 gives

the results of the selections. The accuracies of classification, which are measured by the 10-fold cross

validation with logistic regression and J48 decision trees, are given. For comparison, we also provide

the accuracies of classification based on all variables, the first few number of variables having largest
"univariate MI’s and the subset of variables selected by CfsSubsetEval in Weka.

All of the cases, the numbers of variables selected by the 4 proposed models is less than or equal to
those by CfsSubsetEval while the accuracies of 4 models are comparable. Especially 1-component
normal with independence model gives quite good results with simplicity. Thus this model is prefer-
able.

Most of cases, the accuracy could be improved by adding variables. This can be done by adjusting
the value of e. For example, if we set € = 0, then the I-component normal with independent model
selects 10 variables from the Wine data set including 6 variables in Table 2. The 10 variables give
99% and 94% classification accuracies. We believe that it is a matter of choice. Perhaps, € = 0.01 is
appropriate for most applications.

Based on these observations for subset variable selection, we might conclude following state-
ments.

1. The 1-component multivariate normal with independence model would generally provide reason-
able accuracy of classification with simplicity.
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2. Classification based on subset selection generally gives higher accuracy than using all the vari-
ables.

3. Generally, 3 or 4 number of variables will be enough for subset selection for classification.

4. Subset selection based on univariate MI’s give consistently lower accuracy for all the cases con-
sidered.

5. When a variable is selected, other variables which are highly correlated with this selected variable
should not be selected.

6. A variable with low univariate MI but not being correlated with the variables having high univari-
ate MI’s should not be ignorable.

5. Conclusion

We suggested to compute multivariate MI directly by estimating the multivariate density under various
forms of normal mixture assumptions, and empirically demonstrated that 1-component normal model
with independent assumption is efficient for most of the cases considered. The study also showed that
those variables with almost 0 univariate MI’s could have high impact on the multivariate MI while
those variables with high univariate MI’s but highly correlated with each other would have very little
impact on the value. We considered only the case of continuous type explanatory variables. However,
the complex type can be easily extended by considering the fact f(X), X;) = f(X11X2)f(X2) where X,
is continuous and X is discrete. The experimentation was run using R (Thaka and Gentleman, 1996).
We are currently working to implement the algorithm using C++ and Java to expedite the computing
speed. It will be worthwhile to investigate the proposed models for the data which are complex types
and whose volumes are huge like the microarray data.
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