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Abstract
The baker transformation is an ergodic transformation defined on the half open unit square. This paper
considers the limiting behavior of the partial sum process of a martingale sequence constructed from the baker
transformation. We get the uniform law of large numbers for the baker transformation.
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1. Introduction

In this paper, we obtain uniform versions of the law of large numbers (LLN) for the process generated
by the baker transformation.

In obtaining the uniform LLN, we observe the role played by bracketing of the indexed class
of fanctions of the process and slightly modify the underlying metric. Then we employ the idea of
DeHardt (1971) of the bracketing method to the process generated by the baker transformation.

Let X be a random variable defined on a probability space (Q, 7, P) whose distribution function
is F. Consider a sequence {X; : i > 1} of independent copies of X. Given a Borel measurable function
J 1R — R, we see that {f(X;) : i 2 1} forms a sequence of IID random variables that are more flexible
in applications than the sequence {X; : i = 1}. Consider a class ¥ of real-valued Borel measurable
functions defined on R. Introduce the usual empirical distribution function F, defined by

7
Fo(x) =n"! Z Iix<n, forxeR.
i=1

Define a function indexed integral process S, by

Sn(f)=ff(x)d(Fn—F)(X), for feF. (1.1)

Define a function indexed integral process S, by

S.(f, )= ff(‘x)d (Flug - F){x), forf e‘ F and s € [0, 1], (1.2)
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where [x] is the integer part of x.

Developing a uniform LLN for the function-indexed process such as S,(f) in (1.1) is usually
meant that sup feF IS ()| converges to zero in a certain sense under a certain entropy condition on the
class 7. The process is indexed by # and is considered as random elements in B(¥), the space of the
bounded real-valued functions on ¥, taken with the sup norm || - ||#. It is known that (B(F), || - ll¥)
forms a Banach space.

Let us denote A ® B to be the set {(a, b) : a € A, b € B} of all ordered pairs (a, b). Write
S := F ®[0, 1]. Developing a uniform LLN for the random fields such as S,(f, s) in (1.2) is usually
meant that sup; . |S(f, s)| converges to zero in a certain sense under a certain entropy condition
on the class S. The process is indexed by S and is considered as random elements in B(S), the space
of the bounded real-valued functions on S, taken with the sup norm || - [|s. The result may be used in
the nonparametric statistical inference. See Van de Geer (2000) for applications.

We use the following definition of almost sure convergence and convergence in the mean. See, for
a recent reference, Van der Vaart and Wellner (1996). See also Hoffmann-J¢rgensen (1991).

Definition 1. A sequence of B(F)-valued random functions {Y,} converges with probability 1 to a
constant c if

JeF

P isupY(f) o cp = P{sup Y, (f)" = cp =1.
-\ feF
The sequence {Y,} converges in the mean to a constant ¢ if

E*supY,(f) = Esup Y,(f)" — c.
feF feF

Here E" denotes the upper expectation with respect to the outer probability P* and sup ;e Yu(f)" is
the measurable cover function of sup sr Y,(f).

Remark 1. If the measurability of the process Y, is guaranteed then the convergence in the above
definition boils down to the usual almost sure convergence and convergence in the mean.

In 1971, DeHardt (1971) obtained the uniform LLN for the sequence of IID random variables under
bracketing entropy. DeHardt’s result states that if 7 has a bracketing entropy then supg S, — 0
almost surely. '

The aim of our work is to develop the LLN, the uniform LLN and the uniform LLN for the
random fields for the process generated by the baker transformation by employing DeHardt’s idea of
bracketing method. Our results will be stated as the mean convergence as well as the almost sure
convergence.

In Section 2, we introduce the baker transformation and states the main results.

In Section 3, we provide the proofs for the main results.

2. The Main Results

We illustrate the baker transformation. Let Q = [0, 1) X [0, 1) be the sample space, ¥ be the Borel sets
and P be the Lebsgue measure. The baker transformation on the half open unit square is defined by

#(x, ) (2 Y ) 0<x< 1

X, e X, =1 = ’S

Y 2 =2
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and

y+1 1
\ 2x-1, =1, =—gx<l.
¢>(X.v)-—>(x 7 ) 5%
The name comes from imagining the unit square to be bread dough that is stretched in the x-
direction until it is twice as long and half as high and then cut along x = 1 to make two loaves.
We can think about (..., x_y, Xp, X1,...) € {0, 1}% as a point (x, y) in the half open unit square
{0, 1) x [0, 1) by putting

and
o0
Z X—i
y= —_—.
- i

It is known that the transformation is ergodic.
For ¢t € [0, 1], we define

1
Sy = lpag, 0=<x< 5
]

:—1[0’!]())), —2' <x< 1.
Consider the class of functions G = {£.(x, y)}ou<i. We denote ¢'(x, y) = (x;, i), (x,y) € [0,1) X
[0,1), i=0,1,.... Define

n—1

1
B =B(f)=~ ) [ y).  fi€G.

i=()

We are interested in the uniform limiting behavior of the process B,.
We firstly state the following law of large numbers that will turn out to be a special case of an
ergodic theorem. See Durrett (1991).

Theorem 1. For each fixed t € [0, 1], as n — oo,
B, () >0
almost surely and in the mean.

We secondly state the following uniform law of large numbers for the process generated by the
baker transformation.

Theorem 2. Asn — oo,
sup |B,(t) — 0

0<r<1

almost surely and in the mean.
We generalize the above uniform law of large numbers to the context of random fields. Define

n=1)s}

1
Bit, )= Blfu )= > filwy), fr€G sel01]
=0
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We thirdly state the following uniform law of large numbers for the process of random fields
generated by the baker transformation.

Theorem 3. Asn — oo,
sup sup |B,(t, s) = 0

0<t<1 O<sxl

almost surely and in the mean.

3. A Setup of Martingale and the Proofs -

In the proof of theorems we use the following setup of martingale difference. (Q = S%, 7 = B2, P)
will be our basic probability space. We denote by T the left shift on Q. We assume that P is invariant
under T, i.e., PT~! = P and that T is ergodic. We denote by X = ..., X_;, Xp, Xj,. .. the coordinate
maps on Q. From our assumptions it follows that {X;};cz is a stationary and ergodic process. Next we
define foreachi € Zao-fields M; :=o(X;: j<i)and H; :={f: Q> R: fe M;and f € LY(Q)}.
We also denote for each f € LI(Q), Ei_i(f) := E(f|Mi_;)and Hy© H_| := {f € Hy : E(f - g) =
0 for each g € H_;}. Finally for every f, g € L'(Q) we put

aif, g):=\lf —gll := E|f - gl.

Let us 7% denote the i iteration of 7. If it were ¥ C Hy © H_; then from our setup it follows
that for each fixed f € F, {f(T*(X)), M} is a stationary martingale difference sequence. We write
V; := Ti(X) and V := T%(X) (= X). In that case, one can discuss the limiting behaviors of the process

such as
[n1]

1< 1
Salh) =~ ;f(v,-) and S,(f, 0= ;f(vi).

In order to measure the size of the function space, we define the following version of metric
entropy with bracketing. See, for example, Van der Vaart and Wellner (1996) for the recent reference.

Definition 2. Given two functions |l and u, the bracket {1, u] is the set of all functions f withl < f < u.
An e-bracket is a bracket [1, u] with ||u — l|| < €. The bracketing number Ni1(€) := N (e, F,d) is the
minimum number of e-brackets needed to cover F.

Remark 2.

1. It is known that for given € > 0 there exist finitely many e-brackets [/, ux] whose union contains
G = {f; : t € [0, 1]} and such that |Juy — ]| < e forevery k = 1,..., N[ (e). This is possible because
the cardinality of G is the same as that of [0, 1]. See Van der Vaart and Wellner (1996)

2. Tt is also known that for given € > 0 there exist finitely many e-brackets [I, u;] whose union
contains G ® [0,1] = {(f;,s) : t € [0,1],s € [0, 1]} and such that ||u; — ]| < € for every k =
1,...,Npi(e). This is possible because the cardinality of G ® [0, 1] is the same as that of [0, 1] ®
{0, 1].

Proof: (Proof of Theorem 1) We observe that the filtration M; becomes

M; = o-((xj, yj):Jj< i).
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We also observe that for each 1 € {0, 1],

E(fi(xi, YOI Miz) = E(fi(xo, yo)l M-)) = E(f(x, ) |y) = 0
as follow from
E(fi(xy1y) = Lo.nOWET g 1y(x) = To.nWET [y 1y(x)
=0.

This means that G = (£,(x,) : t € [0, 1}} € Hy© H_;. The fact that the baker transformation is ergodic
appears in p.296 in Durrett (1991). Notice that the Lebesgue measure P is invariant under the baker
transformation @, i.e., P¢~' = P. For each fixed 1 € [0, 1], we apply the ergodic theorem to the baker
transformation ¢, see Durrett (1991), to get

n—1 n—1
B, (1) = i D hlyn) = %Zﬁ (¢'(x.)) = E(fi(x»ly) = 0.
i=0 =0

almost surely and in the mean. g

Proof: (Proof of Theorem 2.) Fix € > 0. Choose finitely many e-brackets [/, ] whose union
contains G and such that lju, — L} < e forevery k = 1,..., N (€). Then, forevery f; € G, there is a
bracket such that

1 n—1
Bf) =~ Z; Filxe i)

a—1

1
D A ) = Euel,) + Ew(x.)
i=0

Il

IA

1 -1
= e, ¥i) + Elu = Bi(x,y)
n =0

n-1

1
< - Z u(xi, yi) + Ehe — Ll(x, ¥).
n &

Consequently,

-1
1 7
sup B,(f)) £ max -Zu»x-, Vi) + €.
te[Og] n(fl) 1<ksN; () 1 - k( i . z)

The right hand side converges almost surely and in the mean to € by Theorem 1. Combination with a
similar argument for infeo,1; B.(f;) vields that

limsup sup {B,(f)l" <¥¢,
n—oo tg[(),i]
almost surely, for every € > 0. Take a sequence ¢, | 0 to see that the limsup must actually be zero
almost surely. The proof Theorem 2 is completed.
O

Proof: (Proof of Theorem 3) The proof is exactly same as that of Theorem 2 by choosing the brackets
as in the Remark 2. U
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