PROJECTIVE PROPERTIES OF REPRESENTATIONS OF A QUIVER OF THE FORM Q = • ⇉ • → •

  • Park, Sangwon (Department of Mathematics Dong-A University) ;
  • Han, Juncheol (Department of Mathematics Educations Pusan National University)
  • Received : 2009.09.25
  • Published : 2009.12.30

Abstract

We define a projective representation $M_1{^{\rightarrow}_{\rightarrow}}M_2{\rightarrow}M_3$ of a quiver $Q={\bullet}{^{\rightarrow}_{\rightarrow}}{\bullet}{\rightarrow}{\bullet}$ and consider their properties. Then we show that any projective representation $M_1{^{\rightarrow}_{\rightarrow}}M_2{\rightarrow}M_3$ of a quiver $Q={\bullet}{^{\rightarrow}_{\rightarrow}}{\bullet}{\rightarrow}{\bullet}$ is isomorphic to the quotient of a direct sum of projective representations $0{^{\rightarrow}_{\rightarrow}}0{\rightarrow}P,\;0{^{\rightarrow}_{\rightarrow}}P{\rightarrow\limits^{id}}P$ and $P{^{\rightarrow}_{\rightarrow}}^{e1}_{e2}P{\oplus}P{\rightarrow\limits^{id_{P{\oplus}P}}}P{\oplus}P$, where $e_1(a)=(a,0)$ and $e_2(a)=(0,a)$.

Keywords

Acknowledgement

Supported by : Dong-A University

References

  1. R. Diestel, Graph Theory, G.T.M. No.88, Springer-Verlag, New York (1997).
  2. E. Enochs, I. Herzog, S. Park, Cyclic quiver rings and polycyclic-by-finite group rings, Houston J. Math. (1), 25 (1999) 1-13.
  3. E. Enochs, I. Herzog, A homotopy of quiver morphism with applications to representations, Canad J. Math. (2), 51 (1999), 294-308. https://doi.org/10.4153/CJM-1999-015-0
  4. S. Park, Projective representations of quivers, IJMMS(2), 31 (2002), 97-101.
  5. S. Park, D. Shin, Injective representation of quiver, Comm. Korean Math. Soc. (1), 21 (2006), 37-43. https://doi.org/10.4134/CKMS.2006.21.1.037
  6. S. Park, Injective and projective properties of representation of quivers with n edges, Korean J. Math. (3), 16 (2008), 323-334.
  7. S. Park, E. Enochs, H. Kim, Injective covers and envelopes of representation of linear quiver, Comm. Algebra (2), 37 (2009), 515-524. https://doi.org/10.1080/00927870802250759